Abstract

Damping tracks with elastic pads are widely utilized for their excellent vibration reduction capabilities and cost-effectiveness, with the elastic pad being the core component. Due to the low material utilization of the existing under slab mat-type elastic pad (UTEP), the research team proposed a new mesh-type elastic pad (MTEP). This study optimizes the design of the MTEP by introducing grooves at the bottom to address drainage issues, and compares their mechanical properties with the UTEP. The analysis reveals that the maximum stress of the MTEP is significantly lower, and its damping performance is notably superior to that of the UTEP. An MTEP prototype was fabricated and subjected to a drop hammer impact experiment, demonstrating a damping effect exceeding 10 dB. Furthermore, a vehicle–damping track with elastic pad coupled dynamics model was established, and its accuracy was validated using measured data. The model's accuracy was validated against experimental data, and the simulation results indicate that the damping track with the MTEP exhibits superior structural stability, vehicle operational quality, and damping performance compared to the damping track with the UTEP.

References

1.
Xia
,
H.
, and
Cao
,
Y.
,
2004
, “
Problem of Railway Traffic Induced Vibrations of Environments
,”
J. Rai. Sci. Eng.
,
1
, pp.
44
51
.
2.
Wang
,
Y.
,
He
,
Z.
,
Cao
,
Z.
,
Su
,
C.
, and
Bao
,
N.
,
2023
, “
Parameter Optimization of a New Cone-Oriented Elastic Side-Supporting Long Sleeper Damping Track: Experiment and Simulation
,”
Constr. Build. Mater.
,
363
, p.
129821
.
3.
Qu
,
S.
,
Ding
,
W.
,
Dong
,
L.
,
Zhu
,
J.
,
Zhu
,
S.
,
Yang
,
Y.
, and
Zhai
,
W.
,
2024
, “
Chiral Phononic Crystal-Inspired Railway Track for Low Frequency Vibration Suppression
,”
Int. J. Mech. Sci.
,
274
, p.
109275
.
4.
Wang
,
Y.
,
He
,
Z.
,
Wang
,
K.
,
Bai
,
Y.
, and
Li
,
P.
,
2023
, “
Comparing Dynamic Performance Between New Sleeper-Damping and Floating-Slab Track System
,”
Constr. Build. Mater.
,
400
, p.
132588
.
5.
Xu
,
G.-H.
,
2019
, “
Dynamic Parameter Optimization and Experimental Study of Tuned Slab Damper on Metro Systems
,”
Shock Vib.
,
2019
(
1
), p.
1236827
.
6.
Zhao
,
C.
, and
Wang
,
P.
,
2013
, “
Experimental Study on the Vibration Damping Performance of Rubber Absorbers for Ballastless Tracks on Viaduct
,”
Chin. Rai. Sci.
,
34
(
4
), pp.
8
13
.
7.
He
,
Z.
,
Zhai
,
W.
,
Wang
,
Y.
,
Shi
,
G.
,
Bao
,
N.
,
Yuan
,
X.
,
Chen
,
Q.
, et al
,
2022
, “
Theoretical and Experimental Study on Vibration Reduction and Frequency Tuning of a New Damped-Sleeper Track
,”
Constr. Build. Mater.
,
336
, p.
127420
.
8.
Zhan
,
J.
,
Xia
,
H.
,
Zenda
,
Y.
, and
Inoue
,
H.
,
2011
, “
Experimental Study on the Noise Reduction Performance of the Ladder Sleeper Track on the Elevated Bridges of Urban Rail Transit
,”
Chin. Rai. Sci.
,
32
(
1
), pp.
36
40
.
9.
Yu
,
P.
,
Cai
,
X.
,
Cai
,
P.
,
Sun
,
F.
,
Lin
,
Q.
, and
Tan
,
S.
,
2017
, “
Study on Vibration Reduction Characteristic of Slab Track With Different Rubber Absorber Stiffness
,”
Rai. Stat. Des.
,
61
(
4
), pp.
1
5
.
10.
Li
,
D.
,
2023
, “
Theoretical and Experimental Study on Dynamic Characteristics of Rubber Floating Slab Track of Intercity Railway
,”
Rai. Stat. Des.
,
67
(
3
), pp.
84
90
.
11.
Liu
,
K.
, and
Liu
,
X.
,
2012
, “
Vertical Dynamic Characterisation of Rubber Floating Slab Track
,”
Rai. Eng.
,
8
, pp.
113
116
.
12.
Sun
,
X.
,
Zhao
,
C.
, and
Wang
,
P.
,
2021
, “
Study on Natural Vibration Properties of CRTS III Slab Study on Natural Vibration Properties of CRTS Ⅲ Slab Ballastless Track Considering Frequency-Dependent Characteristics of Rubber Damping Pads
,”
J. Chin. Rai. Soc.
,
43
(
7
), pp.
121
127
.
13.
Zhao
,
Z.
,
Wei
,
K.
,
Ding
,
W.
,
Cheng
,
F.
, and
Wang
,
P.
,
2021
, “
Evaluation Method of the Vibration Reduction Effect Considering the Real Load-and Frequency-Dependent Stiffness of Slab-Track Mats
,”
Materials
,
14
(
2
), p.
452
.
14.
Zhao
,
Z.
,
Wei
,
K.
,
Ren
,
J.
,
Xu
,
G.
,
Du
,
X.
, and
Wang
,
P.
,
2021
, “
Vibration Response Analysis of Floating Slab Track Supported by Nonlinear Quasi-Zero-Stiffness Vibration Isolators
,”
J. Zhejiang Univ.
,
22
(
1
), pp.
37
52
.
15.
Sheng
,
X.-W.
,
Zheng
,
W.-Q.
,
Zhu
,
Z.-H.
,
Luo
,
T.-J.
, and
Zheng
,
Y.-H.
,
2020
, “
Properties of Rubber Under-Ballast Mat Used as Ballastless Track Isolation Layer in High-Speed Railway
,”
Constr. Build. Mater.
,
240
, p.
117822
.
16.
He
,
J.
,
Wang
,
P.
,
Tang
,
J.
,
Zhao
,
C.
, and
Yi
,
Q.
,
2018
, “
Analysis of Vibration Control Effects of Floating Slabs With Polyurethane Damping Pad and Rubber Damping Pad
,”
Rai. Stat. Des.
,
62
(
2
), pp.
57
61
.
17.
Ge
,
H.
,
Wu
,
M.
,
Liu
,
Z.
,
Yang
,
Q.
, and
Wang
,
P.
,
2017
, “
Temperature Variant Characteristics of Elastic Pad Under Floating Slab and Their Impact on Vehicle-Track Coupled System
,”
Rai. Stat. Des.
,
61
(
3
), pp.
51
55
.
18.
Ren
,
Y.
,
Li
,
Q.
,
Qu
,
S.
,
Yang
,
J.
,
Luo
,
W.
,
Zhu
,
S.
, and
Zhai
,
W.
,
2024
, “
Floating Slab Track Integrated With Quasi-Zero Stiffness Mechanism and Dynamic Vibration Absorber for Suppressing Low-Frequency Vibration
,”
Vehic. Syst. Dyn.
, pp.
1
25
.
19.
Bai
,
Y.
,
He
,
Z.
,
Li
,
P.
, and
Li
,
B.
,
2024
, “
Mechanical Characteristics of New Mesh-Type Elastic Plate Under Different Temperatures and Vehicle Dynamics Loads
,”
Int. J. Non-Linear Mech.
,
166
, p.
104854
.
20.
Alsharo
,
A.
,
Douier
,
K.
,
Hussein
,
M. F. M.
, and
Renno
,
J.
,
2024
, “
Investigating the Effect of Using Softer Rail-Pads on Ground-Borne Vibration From Underground Railways
,”
Int. J. Rail. Transp.
,
12
(
5
), pp.
803
826
.
21.
He
,
Z.
,
Wang
,
Z.
,
Feng
,
Q.
, et al
,
2023
, “
Research on Vibration Damping Performance of New Mesh-Type Ballast Damping Pad
,”
J. Chin. Rai. Soc.
,
45
(
9
), pp.
142
150
.
22.
Bai
,
Y.
,
He
,
Z.
,
Su
,
C.
,
Bao
,
N.
,
Wang
,
H.
,
Shi
,
G.
,
Wang
,
Y.
,
Yun
,
J.
, and
Wang
,
Z.
,
2022
, “
Research on Dynamic Characteristics of Novel Filled Damping Block Mesh-Type Rail Pads for Heavy Haul Railways
,”
Constr. Build. Mater.
,
354
, p.
129174
.
23.
Bai
,
Y.
,
He
,
Z.
,
Bao
,
N.
, and
Li
,
P.
,
2024
, “
A New Mesh-Type Rail Pad With Second-Order Stiffness
,”
Compos. Struct.
,
329
, p.
117763
.
24.
Bai
,
Y.
,
He
,
Z.
,
Bao
,
N.
,
Wang
,
H.
, and
Zhang
,
P.
,
2023
, “
Research on the Influence of Loading Frequency, Material Elasticity, and Geometric Parameters on Mechanical Characteristics of the New Mesh-Type High Damping Rail Pad for Fastening System
,”
Structures
,
53
, pp.
421
431
.
25.
Zhai
,
Z.
,
Zhu
,
S.
,
Yuan
,
X.
, et al
,
2023
, “
Nonlinear Effects of a New Mesh-Type Rail Pad on the Coupled Vehicle-Slab Track Dynamics System Under Extremely Cold Environment
,”
Proc. Inst. Mech. Eng., Part F
,
237
(
3
), pp.
285
296
.
26.
Liu
,
J.
, and
Du
,
X.
,
2005
,
Structural Dynamics
,
China Machine Press
,
Beijing, China
, pp.
60
63
. (in Chinese).
27.
Bai
,
Y.
,
He
,
Z.
,
Qu
,
S.
,
Li
,
B.
,
Yun
,
J.
,
Li
,
P.
, and
Zhai
,
W.
,
2025
, “
Study on Mechanical Properties and Vibration Reduction Effect of a Novel Mesh-Type Elastic Cushion Plate With Orifice: Theory, Simulation and Test
,”
Measurement
,
242
, p.
116033
.
28.
Li
,
M.
,
Wang
,
W.
,
Wu
,
Z.
,
Zhang
,
S.
,
Wu
,
Z.
, and
Wei
,
Z.
,
2024
, “
The Influence of Wheel-Rail Excitation on the Vibration Reduction Effect of Elastic Pad Floating Slab Track
,”
Chin. Rail Sci.
,
45
(
2
), pp.
30
40
.
29.
Zhai
,
W.
,
2015
,
Vehicle-Track Coupled Dynamics
, 4th ed.,
Science Press
,
Beijing
. (in Chinese).
30.
Zhai
,
W.
,
Wang
,
K.
, and
Cai
,
C.
,
2009
, “
Fundamentals of Vehicle-Track Coupled Dynamics
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1349
1376
.
31.
Ministry of Housing and Urban-Rural Development of the People's Republic of China
,
2013
, Technical Code for Floating Slab Track. (in Chinese).
You do not currently have access to this content.