Abstract

Ventilation noise control devices often involve a trade-off between their size and ventilating performance, which limits the ability to reduce low-frequency sound in high-ventilation conditions. To address this challenge, the present study explores the use of Hilbert fractal-based design in ventilated metamaterials for improved acoustic performance. The sound transmission loss (STL) of these metamaterials is compared to that of a simple expansion chamber, which serves as the base case. Various parameters, including Hilbert order (O), channel width (K), ventilated space (l), unit cell thickness (H), and the number of unit cells (N) are investigated. Initially, the transfer matrix method evaluates STL without considering thermoviscous effects, which are later incorporated in numerical simulations and impedance tube experiments. The parametric study reveals that increasing the Hilbert curve order decreases the fundamental frequency, while a higher K value increases it. Additionally, more unit cells enhance STL but reduce its broadband nature. Through the finite element method, band diagrams and eigenmodes of Hilbert and base configurations indicate that increased Hilbert orders result in more bands and correspondence between transmission loss spectra and band gaps. The study also identifies dipole resonance modes in the Hilbert structure, which induce a negative effective bulk modulus that contributes to STL. Real-time performance testing in a twin reverberation chamber demonstrates that the Hilbert structure achieves a 5-dB improvement in STL compared to the base configuration across the 700- to 1400-Hz range. These findings are essential for achieving broadband low-frequency noise reduction while allowing airflow.

References

1.
Morillas
,
J. M. B.
,
Gozalo
,
G. R.
,
González
,
D. M.
,
Moraga
,
P. A.
, and
Vílchez-Gómez
,
R.
,
2018
, “
Noise Pollution and Urban Planning
,”
Curr. Pollut. Rep.
,
4
(
3
), pp.
208
219
.
2.
Lusk
,
S. L.
,
McCullagh
,
M.
,
Dickson
,
V. V.
, and
Xu
,
J.
,
2016
, “
Position Statement: Harmful Effects of Environmental Noise Exposures
,”
Nurs. Outlook
,
64
(
4
), pp.
395
396
.
3.
Héroux
,
M. E.
,
Babisch
,
W.
,
Belojevic
,
G.
,
Brink
,
M.
,
Janssen
,
S.
,
Lercher
,
P.
,
Paviotti
,
M.
, et al
,
2015
, “
WHO Environmental Noise Guidelines for the European Region
,”
Euronoise
,
2015
, pp.
2589
2593
.
4.
Tang
,
S. K.
,
2017
, “
A Review on Natural Ventilation-Enabling Façade Noise Control Devices for Congested High-Rise Cities
,”
Appl. Sci.
,
7
(
2
), p.
175
.
5.
Tong
,
Y. G.
, and
Tang
,
S. K.
,
2013
, “
Plenum Window Insertion Loss in the Presence of a Line Source – A Scale Model Study
,”
J. Acoust. Soc. Am.
,
133
(
3
), pp.
1458
1467
.
6.
Huang
,
H.
,
Qiu
,
X.
, and
Kang
,
J.
,
2011
, “
Active Noise Attenuation in Ventilation Windows
,”
J. Acoust. Soc. Am.
,
130
(
1
), pp.
176
188
.
7.
Mohsen
,
E. A.
, and
Oldham
,
D. J.
,
1977
, “
Traffic Noise Reduction Due to the Screening Effect of Balconies on a Building Façade
,”
Appl. Acoust.
,
10
(
4
), pp.
243
257
.
8.
Badino
,
E.
,
Manca
,
R.
,
Shtrepi
,
L.
,
Calleri
,
C.
, and
Astolfi
,
A.
,
2019
, “
Effect of Façade Shape and Acoustic Cladding on Reduction of Leisure Noise Levels in a Street Canyon
,”
Build. Environ.
,
157
, pp.
242
256
.
9.
Tang
,
S. K.
,
2012
, “
Narrow Sidebranch Arrays for Low Frequency Duct Noise Control
,”
J. Acoust. Soc. Am.
,
132
(
5
), pp.
3086
3097
.
10.
Wang
,
Z. H.
,
Hui
,
C. K.
, and
Ng
,
C. F.
,
2014
, “
The Acoustic Performance of Ventilated Window With Quarter-Wave Resonators and Membrane Absorber
,”
Appl. Acoust.
,
78
, pp.
1
6
.
11.
Murphy
,
E.
, and
King
,
E. A.
,
2014
, “Chapter 7—Noise Mitigation Approaches,”
Environmental Noise Pollution
,
E.
Murphy
and
E. A.
King
, eds.,
Elsevier
,
Boston, MA
, pp.
203
245
.
12.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
13.
Xie
,
S.
,
Wang
,
D.
,
Feng
,
Z.
, and
Yang
,
S.
,
2020
, “
Sound Absorption Performance of Microperforated Honeycomb Metasurface Panels With a Combination of Multiple Orifice Diameters
,”
Appl. Acoust.
,
158
, p.
107046
.
14.
Long
,
H.
,
Shao
,
C.
,
Liu
,
C.
,
Cheng
,
Y.
, and
Liu
,
X.
,
2019
, “
Broadband Near-Perfect Absorption of Low-Frequency Sound by Subwavelength Metasurface
,”
Appl. Phys. Lett.
,
115
(
10
), p.
103503
.
15.
Wang
,
W.
,
2020
, “
Analysis and Optimization of a Metamaterial for Noise Reduction
,” Master of Science Thesis, Technical University of Munich, Munich, Bavaria, Germany.
16.
Bai
,
Y.
,
Wang
,
X.
,
Luo
,
X.
, and
Huang
,
Z.
,
2022
, “
Acoustic Superscatterer Enables Remote Mitigation of Underwater Source Radiation
,”
J. Appl. Phys.
,
131
(
24
), p.
244502
.
17.
Ramachandran
,
V. P.
, and
Rajagopal
,
P.
,
2023
, “
Bandwidth-Limited Passive Suppression of Cylindrical Source Radiation Using Metamaterial Based Acoustic Superscatterers
,”
J. Sound Vib.
,
560
, p.
117767
.
18.
Li
,
W.
,
Lu
,
G.
, and
Huang
,
X.
,
2022
, “
Acoustic Hologram of the Metasurface With Phased Arrays via Optimality Criteria
,”
Mech. Syst. Signal Process.
,
180
, p.
109420
.
19.
He
,
M. X.
, and
Ding
,
Q.
,
2023
, “
Dynamic Analysis and Design of Metamaterial Plates With Crossed Acoustic Black Holes for Vibration Control
,”
ASME J. Vib. Acoust.
,
145
(
1
), p.
011013
.
20.
Zheng
,
L. Y.
,
Wu
,
Y.
,
Ni
,
X.
,
Chen
,
Z. G.
,
Lu
,
M. H.
, and
Chen
,
Y. F.
,
2014
, “
Acoustic Cloaking by a Near-Zero-Index Phononic Crystal
,”
Appl. Phys. Lett.
,
104
(
16
), p.
161904
.
21.
Li
,
Q.
, and
Vipperman
,
J. S.
,
2019
, “
Two-Dimensional Arbitrarily Shaped Acoustic Cloaks With Triangular Patterns of Homogeneous Properties
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021014
.
22.
Lee
,
H. M.
,
Wang
,
Z.
,
Lim
,
K. M.
,
Xie
,
J.
, and
Lee
,
H. P.
,
2020
, “
Novel Plenum Window With Sonic Crystals for Indoor Noise Control
,”
Appl. Acoust.
,
167
, p.
107390
.
23.
Shen
,
C.
,
Xie
,
Y.
,
Li
,
J.
,
Cummer
,
S. A.
, and
Jing
,
Y.
,
2018
, “
Acoustic Metacages for Sound Shielding With Steady Air Flow
,”
J. Appl. Phys.
,
123
(
12
), p.
124501
.
24.
Melnikov
,
A.
,
Maeder
,
M.
,
Friedrich
,
N.
,
Pozhanka
,
Y.
,
Wollmann
,
A.
,
Scheffler
,
M.
,
Oberst
,
S.
,
Powell
,
D.
, and
Marburg
,
S.
,
2020
, “
Acoustic Metamaterial Capsule for Reduction of Stage Machinery Noise
,”
J. Acoust. Soc. Am.
,
147
(
3
), pp.
1491
1503
.
25.
Kim
,
S. H.
, and
Lee
,
S. H.
,
2014
, “
Air Transparent Soundproof Window
,”
AIP Adv.
,
4
(
11
), p.
117123
.
26.
Yu
,
X.
,
Lu
,
Z.
,
Cheng
,
L.
, and
Cui
,
F.
,
2017
, “
On the Sound Insulation of Acoustic Metasurface Using a Sub-Structuring Approach
,”
J. Sound Vib.
,
401
, pp.
190
203
.
27.
Kumar
,
S.
,
Xiang
,
T. B.
, and
Lee
,
H. P.
,
2020
, “
Ventilated Acoustic Metamaterial Window Panels for Simultaneous Noise Shielding and Air Circulation
,”
Appl. Acoust.
,
159
, p.
107088
.
28.
Wang
,
X.
,
Luo
,
X.
,
Yang
,
B.
, and
Huang
,
Z.
,
2019
, “
Ultrathin and Durable Open Metamaterials for Simultaneous Ventilation and Sound Reduction
,”
Appl. Phys. Lett.
,
115
(
17
), pp.
2
5
.
29.
Xiao
,
Z.
,
Gao
,
P.
,
He
,
X.
,
Qu
,
Y.
, and
Wu
,
L.
,
2023
, “
Multifunctional Acoustic Metamaterial for Air Ventilation, Broadband Sound Insulation and Switchable Transmission
,”
J. Phys. D: Appl. Phys.
,
56
(
4
), p.
044006
.
30.
Xin
,
Y. J.
,
Huang
,
R. N.
,
Li
,
P.
,
Qian
,
Q.
,
Yan
,
Q.
,
Sun
,
Y. T.
,
Ding
,
Q.
,
Huang
,
Y. J.
, and
Cheng
,
S. L.
,
2023
, “
Labyrinthine Acoustic Metamaterials With Triangular Self-Similarity for Low-Frequency Sound Insulation at Deep Subwavelength Dimensions
,”
Results Phys.
,
54
, p.
107151
.
31.
Zhao
,
P.
,
Zhang
,
K.
,
Zhao
,
C.
, and
Deng
,
Z.
,
2022
, “
Mechanism of Band Gaps in Self-Similar Triangular Lattice with Koch Fractal
,”
ASME J. Vib. Acoust.
,
144
(
3
), p.
031009
.
32.
Chen
,
Y.
, and
Wang
,
L.
,
2015
, “
Multiband Wave Filtering and Waveguiding in Bio-Inspired Hierarchical Composites
,”
Extreme Mech. Lett.
,
5
, pp.
18
24
.
33.
Wen
,
W.
,
Zhou
,
L.
,
Li
,
J.
,
Ge
,
W.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2002
, “
Subwavelength Photonic Band Gaps from Planar Fractals
,”
Phys. Rev. Lett.
,
89
(
22
), pp.
1
4
.
34.
Xia
,
B.
,
Li
,
L.
,
Liu
,
J.
, and
Yu
,
D.
,
2018
, “
Acoustic Metamaterial With Fractal Coiling Up Space for Sound Blocking in a Deep Subwavelength Scale
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011011
.
35.
Man
,
X.
,
Liu
,
T.
,
Xia
,
B.
,
Luo
,
Z.
,
Xie
,
L.
, and
Liu
,
J.
,
2018
, “
Space-Coiling Fractal Metamaterial With Multi-Bandgaps on Subwavelength Scale
,”
J. Sound Vib.
,
423
, pp.
322
339
.
36.
Song
,
G. Y.
,
Huang
,
B.
,
Dong
,
H. Y.
,
Cheng
,
Q.
, and
Cui
,
T. J.
,
2016
, “
Broadband Focusing Acoustic Lens Based on Fractal Metamaterials
,”
Sci. Rep.
,
6
(
1
), pp.
1
7
.
37.
Cai
,
X.
,
Huang
,
Z.
,
Wang
,
C.
,
Jia
,
P.
,
Yang
,
J.
, and
Zhang
,
L.
,
2023
, “
Acoustic Wave Manipulation by Phase Conjugate Metasurface
,”
ASME J. Vib. Acoust.
,
145
(
2
), p.
021006
.
38.
Man
,
X.
,
Luo
,
Z.
,
Liu
,
J.
, and
Xia
,
B.
,
2019
, “
Hilbert Fractal Acoustic Metamaterials With Negative Mass Density and Bulk Modulus on Subwavelength Scale
,”
Mater. Des.
,
180
, p.
107911
.
39.
Xin
,
Y. J.
,
Huang
,
R. N.
,
Li
,
P.
,
Yan
,
H.
,
Dong
,
X. J.
,
Yan
,
Q.
,
Sun
,
Y. T.
,
Cheng
,
S. L.
, and
Zhao
,
Q. X.
,
2023
, “
Labyrinth Acoustic Metamaterials With Fractal Structure Based on Hilbert Curve
,”
Physica B
,
667
, p.
415150
.
40.
Comandini
,
G.
,
Khodr
,
C.
,
Ting
,
V. P.
,
Azarpeyvand
,
M.
, and
Scarpa
,
F.
,
2022
, “
Sound Absorption in Hilbert Fractal and Coiled Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
120
(
6
), p.
061902
.
41.
Ma
,
P. S.
,
Seo
,
Y. H.
, and
Lee
,
H.
,
2023
, “
Multiband Ventilation Barriers Enabled by Space-Coiling Acoustic Metamaterials
,”
Appl. Acoust.
,
211
, p.
109565
.
42.
Xiang
,
L.
,
Wang
,
G.
,
Zhu
,
C.
,
Shi
,
M.
,
Hu
,
J.
, and
Luo
,
G.
,
2022
, “
Ventilation Barrier With Space-Coiling Channels of Varying Cross-Section for Broadband Sound Insulation
,”
Appl. Acoust.
,
201
, p.
109110
.
43.
Kumar
,
S.
, and
Lee
,
H. P.
,
2020
, “
Labyrinthine Acoustic Metastructures Enabling Broadband Sound Absorption and Ventilation
,”
Appl. Phys. Lett.
,
116
(
13
), p.
134103
.
44.
Zhao
,
X.
,
Liu
,
G.
,
Zhang
,
C.
,
Xia
,
D.
, and
Lu
,
Z.
,
2018
, “
Fractal Acoustic Metamaterials for Transformer Noise Reduction
,”
Appl. Phys. Lett.
,
113
(
7
), p.
7
.
45.
Li
,
Z.
,
2018
, “
Spectral Comparison of Pass-by Traffic Noise
,”
Proceedings of INTER-NOISE 2018 – 47th International Congress and Exposition on Noise Control Engineering Impact Noise Control Engineering
,
Chicago, IL
,
Aug. 26–29
, ASME, pp.
1
8
.
46.
Buratti
,
C.
,
Belloni
,
E.
, and
Moretti
,
E.
,
2014
, “
Façade Noise Abatement Prediction: New Spectrum Adaptation Terms Measured in Field in Different Road and Railway Traffic Conditions
,”
Appl. Acoust.
,
76
, pp.
238
248
.
47.
Mesihovic
,
M.
, and
Milford
,
I.
,
2016
, “
The Need for Updated Traffic Noise Spectra, Used for Calculation of Sound Insulation of Windows and Facades
,”
Proceedings of INTER-NOISE 2016 – 45th International Congress and Exposition on Noise Control Engineering
, vol. 253, no. 1, pp.
7679
7686
.
48.
Yang
,
W.
,
Cai
,
M.
, and
Luo
,
P.
,
2020
, “
The Calculation of Road Traffic Noise Spectrum Based on the Noise Spectral Characteristics of Single Vehicles
,”
Appl. Acoust.
,
160
, p.
107128
.
49.
Kumar
,
S.
, and
Lee
,
H. P.
,
2022
, “
Acoustic Performance of Sonic Metacage Consisting of Helmholtz’s Resonator Columns With Internal Partitions
,”
Appl. Acoust.
,
196
, p.
108887
.
50.
Krasikova
,
M.
,
Krasikov
,
S.
,
Melnikov
,
A.
,
Baloshin
,
Y.
,
Marburg
,
S.
,
Powell
,
D. A.
, and
Bogdanov
,
A.
,
2023
, “
Metahouse: Noise-Insulating Chamber Based on Periodic Structures
,”
Adv. Mater. Technol.
,
8
(
1
), pp.
1
11
.
51.
Jung
,
J. W.
,
Kim
,
J. E.
, and
Lee
,
J. W.
,
2018
, “
Acoustic Metamaterial Panel for Both Fluid Passage and Broadband Soundproofing in the Audible Frequency Range
,”
Appl. Phys. Lett.
,
112
(
4
), p.
041903
.
52.
Ingard
,
U.
,
1953
, “
On the Theory and Design of Acoustic Resonators
,”
J. Acoust. Soc. Am.
,
25
(
6
), pp.
1037
1061
.
53.
Huang
,
S.
,
Fang
,
X.
,
Wang
,
X.
,
Assouar
,
B.
,
Cheng
,
Q.
, and
Li
,
Y.
,
2018
, “
Acoustic Perfect Absorbers via Spiral Metasurfaces With Embedded Apertures
,”
Appl. Phys. Lett.
,
113
(
23
), p.
233501
.
54.
Huang
,
S.
,
Zhou
,
Z.
,
Li
,
D.
,
Liu
,
T.
,
Wang
,
X.
,
Zhu
,
J.
, and
Li
,
Y.
,
2020
, “
Compact Broadband Acoustic Sink With Coherently Coupled Weak Resonances
,”
Sci. Bull.
,
65
(
5
), pp.
373
379
.
55.
Zhou
,
X.
,
Wang
,
X.
, and
Xin
,
F.
,
2023
, “
Ultrathin Acoustic Metamaterial as Super Absorber for Broadband Low-Frequency Underwater Sound
,”
Sci. Rep.
,
13
(
1
), pp.
1
10
.
56.
Zhao
,
J.
,
Zhang
,
L.
, and
Wu
,
Y.
,
2017
, “
Enhancing Monochromatic Multipole Emission by a Subwavelength Enclosure of Degenerate Mie Resonances
,”
J. Acoust. Soc. Am.
,
142
(
1
), pp.
EL24
EL29
.
57.
ISO (International Organization for Standardization)
, “ISO 10140-1:2021: Acoustics – Laboratory Measurement of Sound Insulation of Building Elements,” https://www.iso.org/obp/ui/en/#iso:std:iso:10140:-1:ed-3:v1:en
58.
COMSOL Multiphysics User Guide
,
2010
, “Acoustics Module,” Interfaces, p.
214
.
59.
Fokin
,
V.
,
Ambati
,
M.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Method for Retrieving Effective Properties of Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. B
,
76
(
14
), pp.
1
5
.
60.
Nguyen
,
H. Q.
,
Wu
,
Q.
,
Chen
,
H.
,
Chen
,
J. J.
,
Yu
,
Y. K.
,
Tracy
,
S.
, and
Huang
,
G. L.
,
2021
, “
A Fano-Based Acoustic Metamaterial for Ultra-Broadband Sound Barriers
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
477
(
2248
), p.
20210024
.
61.
Cheng
,
Y.
,
Zhou
,
C.
,
Yuan
,
B. G.
,
Wu
,
D. J.
,
Wei
,
Q.
, and
Liu
,
X. J.
,
2015
, “
Ultra-Sparse Metasurface for High Reflection of Low-Frequency Sound Based on Artificial Mie Resonances
,”
Nat. Mater.
,
14
(
10
), pp.
1013
1019
.
62.
Yao
,
Y.
,
Hou
,
Z.
,
Wu
,
F.
, and
Zhang
,
X.
,
2011
, “
Low-Frequency Band Gaps in One-Dimensional Thin Phononic Crystal Plate With Periodic Stubbed Surface
,”
Physica B
,
406
(
11
), pp.
2249
2253
.
63.
Karthik
,
R.
,
Barathula
,
S.
, and
Srinivasan
,
K.
,
2024
, “
Data-Driven Approach for Prediction of Band Diagram of Locally Resonant Sonic Crystal
,”
J. Phys. D: Appl. Phys.
,
57
(
13
), p.
135307
.
64.
Almeida
,
G. N.
,
Vergara
,
E. F.
, and
Lenzi
,
A.
,
2023
, “
Metamaterial Based on Labyrinthine Tubes Loaded Periodically and Ultra-Low Phase Velocity to the Low-Frequency Energy Control
,”
Appl. Phys. Lett.
,
123
(
8
), p.
081706
.
You do not currently have access to this content.