Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The piezoelectric impedance-based technique is increasingly recognized for its promise in structural health monitoring and damage identification. Built upon their self-sensing actuation capability, piezoelectric transducers can be integrated into host structures to acquire the system-level impedance information in a high-frequency range with a small wavelength. Furthermore, the frequency-sweeping harmonic excitations in impedance measurements lead to the potential for model-based inverse identification of damage location and severity. A major challenge in damage identification, however, is that the inverse analysis is generally underdetermined, as the measurement information may not be adequate to yield a unique solution. In this research, a new methodology of tunable sensing in conjunction with multi-objective optimization inverse analysis is established. Taking advantage of the two-way electromechanical coupling of piezoelectric transducers, tunable inductance is integrated into the measurement circuit. For the same damage scenario, by tuning the inductance to a series of values, a family of impedance measurements can be acquired. Meanwhile, the inverse analysis is cast into a multi-objective optimization problem, aiming at minimizing the difference between measurement and model prediction and achieving sparsity in damage index vector. A Q-learning-based multi-objective particle swarm optimization is synthesized to reach a small yet diverse solution set. We report the circuitry integration details as well as the algorithm enhancement with systematic case investigations. It is validated that the new methodology with enriched measurement can produce a smaller solution set encompassing the true damage scenario, thereby providing vital information for diagnoses and prognosis.

References

1.
Min
,
J.
,
Park
,
S.
,
Yun
,
C. B.
,
Lee
,
C. G.
, and
Lee
,
C.
,
2012
, “
Impedance-Based Structural Health Monitoring Incorporating Neural Network Technique for Identification of Damage Type and Severity
,”
Eng. Struct.
,
39
, pp.
210
220
.
2.
Selva
,
P.
,
Cherrier
,
O.
,
Budinger
,
V.
,
Lachaud
,
F.
, and
Morlier
,
J.
,
2013
, “
Smart Monitoring of Aeronautical Composites Plates Based on Electromechanical Impedance Measurements and Artificial Neural Networks
,”
Eng. Struct.
,
56
, pp.
794
804
.
3.
Voutetaki
,
M. E.
,
Papadopoulos
,
N. A.
,
Angeli
,
G. M.
, and
Providakis
,
C. P.
,
2016
, “
Investigation of a New Experimental Method for Damage Assessment of RC Beams Failing in Shear Using Piezoelectric Transducers
,”
Eng. Struct.
,
114
, pp.
226
240
.
4.
Ai
,
D.
,
Luo
,
H.
,
Wang
,
C.
, and
Zhu
,
H.
,
2018
, “
Monitoring of the Load-Induced RC Beam Structural Tension/Compression Stress and Damage Using Piezoelectric Transducers
,”
Eng. Struct.
,
154
, pp.
38
51
.
5.
Ai
,
D.
,
Mo
,
F.
,
Han
,
Y.
, and
Wen
,
J.
,
2022
, “
Automated Identification of Compressive Stress and Damage in Concrete Specimen Using Convolutional Neural Network Learned Electromechanical Admittance
,”
Eng. Struct.
,
259
, p.
114176
.
6.
Zhao
,
S.
,
Fan
,
S.
, and
Chen
,
J.
,
2019
, “
Quantitative Assessment of the Concrete Gravity Dam Damage Under Earthquake Excitation Using Electro-Mechanical Impedance Measurements
,”
Eng. Struct.
,
191
, pp.
162
178
.
7.
Ai
,
D.
, and
Zhang
,
R.
,
2023
, “
Deep Learning of Electromechanical Admittance Data Augmented by Generative Adversarial Networks for Flexural Performance Evaluation of RC Beam Structure
,”
Eng. Struct.
,
296
, p.
116891
.
8.
Shuai
,
Q.
,
Zhou
,
K.
,
Zhou
,
S.
, and
Tang
,
J.
,
2017
, “
Fault Identification Using Piezoelectric Impedance Measurement and Model-Based Intelligent Inference With Pre-Screening
,”
Smart Mater. Struct.
,
26
(
4
), p.
045007
.
9.
Cao
,
P.
,
Shuai
,
Q.
, and
Tang
,
J.
,
2018
, “
Structural Damage Identification Using Piezoelectric Impedance Measurement With Sparse Inverse Analysis
,”
Smart Mater. Struct.
,
27
(
3
), p.
035020
.
10.
Fan
,
X.
,
Li
,
J.
, and
Hao
,
H.
,
2018
, “
Impedance Resonant Frequency Sensitivity Based Structural Damage Identification With Sparse Regularization: Experimental Studies
,”
Smart Mater. Struct.
,
28
(
1
), p.
015003
.
11.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
,
2006
, “
An Enhanced Frequency-Shift-Based Damage Identification Method Using Tunable Piezoelectric Transducer Circuitry
,”
Smart Mater. Struct.
,
15
(
3
), pp.
799
808
.
12.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
,
2007
, “
An Optimal Sensitivity-Enhancing Feedback Control Approach via Eigenstructure Assignment for Structural Damage Identification
,”
ASME J. Vib. Acoust.
,
129
(
6
), pp.
771
783
.
13.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
,
2008
, “
On the Tuning of Variable Piezoelectric Transducer Circuitry Network for Structural Damage Identification
,”
J. Sound Vib.
,
309
(
3–5
), pp.
695
717
.
14.
Zhao
,
J.
,
Tang
,
J.
, and
Wang
,
K. W.
,
2008
, “
Enhanced Statistical Damage Identification Using Frequency-Shift Information With Tunable Piezoelectric Transducer Circuitry
,”
Smart Mater. Struct.
,
17
(
6
), pp.
065003
.
15.
Wang
,
X.
, and
Tang
,
J.
,
2010a
, “
An Enhanced Piezoelectric Impedance Approach for Damage Detection With Circuitry Integration
,”
Smart Mater. Struct.
,
19
(
4
), pp.
045001
.
16.
Wang
,
X.
, and
Tang
,
J.
,
2010b
, “
Damage Detection Using Piezoelectric Admittance Approach With Inductive Circuitry
,”
J. Intell. Mater. Syst. Struct.
,
21
(
7
), pp.
667
676
.
17.
Kim
,
J.
, and
Wang
,
K. W.
,
2014
, “
An Enhanced Impedance-Based Damage Identification Method Using Adaptive Piezoelectric Circuitry
,”
Smart Mater. Struct.
,
23
(
9
), pp.
095041
.
18.
Kim
,
J.
, and
Wang
,
K. W.
,
2019
, “
Electromechanical Impedance-Based Damage Identification Enhancement Using Bistable and Adaptive Piezoelectric Circuitry
,”
Struct. Health. Monit.
,
18
(
4
), pp.
1268
1281
.
19.
Kim
,
J.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2015
, “
Enhancing Structural Damage Identification Robustness to Noise and Damping With Integrated Bistable and Adaptive Piezoelectric Circuitry
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011003
.
20.
Zhang
,
X.
,
Wang
,
H.
,
Hou
,
B.
,
Xu
,
J.
, and
Yan
,
R.
,
2022
, “
1D-CNN-Based Damage Identification Method Based on Piezoelectric Impedance Using Adjustable Inductive Shunt Circuitry for Data Enrichment
,”
Struct. Health. Monit.
,
21
(
5
), pp.
1992
2009
.
21.
Davenport
,
M.A.
,
Duarte
,
M.F.
,
Eldar
,
Y.C.
and
Kutyniok
,
G
.,
2012
.
Introduction to Compressed Sensing
,
Cambridge University Press
,
Cambridge, UK
, pp.
1
64
22.
Ding
,
Z.
,
Li
,
J.
, and
Hao
,
H.
,
2020
, “
Non-Probabilistic Method to Consider Uncertainties in Structural Damage Identification Based on Hybrid Jaya and Tree Seeds Algorithm
,”
Eng. Struct.
,
220
, p.
110925
.
23.
Ding
,
Z.
,
Hou
,
R.
, and
Xia
,
Y.
,
2022
, “
Structural Damage Identification Considering Uncertainties Based on a Jaya Algorithm With a Local Pattern Search Strategy and L0. 5 Sparse Regularization
,”
Eng. Struct.
,
261
, p.
114312
.
24.
Chen
,
Z.
, and
Sun
,
H.
,
2021
, “
Sparse Representation for Damage Identification of Structural Systems
,”
Struct. Health. Monit.
,
20
(
4
), pp.
1644
1656
.
25.
Cao
,
P.
,
Zhang
,
Y.
,
Zhou
,
K.
, and
Tang
,
J.
,
2023
, “
A Reinforcement Learning Hyper-Heuristic in Multi-Objective Optimization With Application to Structural Damage Identification
,”
Struct. Multidiscipl. Optim.
,
66
(
1
), p.
16
.
26.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
,
IEEE
, Vol.
4
, pp.
1942
1948
.
27.
Gad
,
A. G.
,
2022
, “
Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review
,”
Arch. Comput. Meth. Eng.
,
29
(
5
), pp.
2531
2561
.
28.
Alkayem
,
N. F.
,
Cao
,
M.
,
Zhang
,
Y.
,
Bayat
,
M.
and
Su
,
Z.
,
2018
, “
Structural Damage Detection Using Finite Element Model Updating with Evolutionary Algorithms: A Survey
,”
Neural Comput. Appl.
,
30
, pp.
389
411
.
29.
Yao
,
R.
,
Pakzad
,
S. N.
, and
Venkitasubramaniam
,
P.
,
2017
, “
Compressive Sensing Based Structural DamageDetection and Localization Using Theoretical and Metaheuristic Statistics
,”
Struct. Control HealthMonit.
,
24
(
4
), p.
e1881
.
30.
Tiachacht
,
S.
,
Bouazzouni
,
A.
,
Khatir
,
S.
,
Wahab
,
M. A.
,
Behtani
,
A.
, and
Capozucca
,
R.
,
2018
, “
Damage Assessment in Structures Using Combination of a Modified Cornwell Indicator and Genetic Algorithm
,”
Eng. Struct.
,
177
, pp.
421
430
.
31.
Ding
,
Z.
,
Li
,
J.
, and
Hao
,
H.
,
2019
, “
Structural Damage Identification Using Improved Jaya Algorithm Based on Sparse Regularization and Bayesian Inference
,”
Mech. Syst. Signal Process.
,
132
, pp.
211
231
.
32.
Minh
,
H. L.
,
Khatir
,
S.
,
Wahab
,
M. A.
, and
Cuong-Le
,
T.
,
2021
, “
An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for Damage Identification in 3D Transmission Tower
,”
Eng. Struct.
,
242
, p.
112412
.
33.
Črepinšek
,
M.
,
Liu
,
S. H.
, and
Mernik
,
M.
,
2013
, “
Exploration and Exploitation in Evolutionary Algorithms: A Survey
,”
ACM Comput. Surv.
,
45
(
3
), pp.
1
33
.
34.
Ding
,
Z.
,
Li
,
L.
,
Wang
,
X.
,
Yu
,
T.
, and
Xia
,
Y.
,
2023
, “
Vibration-Based FRP Debonding Detection Using a Q-Learning Evolutionary Algorithm
,”
Eng. Struct.
,
275
, p.
115254
.
35.
Samma
,
H.
,
Lim
,
C. P.
, and
Saleh
,
J. M.
,
2016
, “
A New Reinforcement Learning-Based Memetic Particle Swarm Optimizer
,”
Appl. Soft Comput.
,
43
, pp.
276
297
.
36.
Lim
,
W. H.
, and
Isa
,
N. A. M.
,
2013
, “
Two-Layer Particle Swarm Optimization With Intelligent Division of Labor
,”
Eng. Appl. Artif. Intell.
,
26
(
10
), pp.
2327
2348
.
37.
Ji
,
Z.
,
Liao
,
H.
,
Wang
,
Y.
, and
Wu
,
Q. H.
,
2007
, “
A Novel Intelligent Particle Optimizer for Global Optimization of Multimodal Functions
,”
Proceedings of the 2007 IEEE Congress on Evolutionary Computation
,
Singapore
,
Sept. 25–28
,
IEEE
, pp.
3272
3275
.
38.
Watkins
,
C. J.
, and
Dayan
,
P.
,
1992
, “
Q-Learning
,”
Mach. Learn.
,
8
, pp.
279
292
.
You do not currently have access to this content.