Abstract

In the field of rail transport and aerospace field, vibration energy harvesting is inevitably subjected to coupled excitations, including train wheel–track interaction induced friction heat and forced vibration, periodic thermal radiation, and vibration excitation. This paper investigates a coupled thermo-electric-elastic piezoelectric vibration energy harvester with axial movement under external heat flux and mechanical force load. The coupled forced vibration equation, coupled electric equation, and coupled thermoelastic heat conduction equation are derived and solved by Green's function theory. To analyze the effect of excitations on the response characteristics, the decoupled method is utilized to solve the coupled multi-field equations and obtain the displacement, electric, and temperature distribution closed-form solutions. The displacement coupling effect induced temperature distribution and the thermo-electric coupling effect triggered displacement are respectively decoupled and analyzed. The obtained closed-form temperature distribution and displacement solutions are verified by the finite element method. To further verify the obtained solutions, a numerical method is conducted by decoupling the coupled multi-field equations and comparing them with prior solutions. Additionally, the different height-to-length ratios, axially moving speeds, and external force load are analyzed in detail. The results indicate that the displacement, temperature distribution, and output voltage vary with external conditions due to the coupled multi-field effect. Overall, this work investigates the thermo-electric-elastic coupling effect on the axially moving piezoelectric energy harvesting, which is beneficial to promote theoretical investigations of the coupled multi-field energy harvesting system and accelerate the practical applications in the aerospace field.

References

1.
Mohammadi
,
R.
, and
Hosseini
,
M.
,
2024
, “
Modeling and Free Vibration Analysis of a Rotating Functionally Graded Thin-Walled Hub-Blade System Under Aerothermoelastic Loading
,”
Aerosp. Sci. Technol.
,
146
, p.
108935
.
2.
Shen
,
Z.
,
Tian
,
Q.
,
Liu
,
X.
, and
Hu
,
G.
,
2013
, “
Thermally Induced Vibrations of Flexible Beams Using Absolute Nodal Coordinate Formulation
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
386
393
.
3.
Azadi
,
E.
,
Fazelzadeh
,
S. A.
, and
Azadi
,
M.
,
2017
, “
Thermally Induced Vibrations of Smart Solar Panel in a Low-Orbit Satellite
,”
Adv. Space Res.
,
59
(
6
), pp.
1502
1513
.
4.
Le
,
M. Q.
,
Capsal
,
J. F.
,
Lallart
,
M.
,
Hebrard
,
Y.
,
Van Der Ham
,
A.
,
Reffe
,
N.
,
Geynet
,
L.
, and
Cottinet
,
P.-J.
,
2015
, “
Review on Energy Harvesting for Structural Health Monitoring in Aeronautical Applications
,”
Prog. Aerosp. Sci.
,
79
, pp.
147
157
.
5.
Zhang
,
H.
,
Zhou
,
S.
,
Xu
,
H.
, and
Zhou
,
S.
,
2023
, “
A High-Performance Rotational Electromagnetic Energy Harvester Based on Magnetic Plucking: Design, Simulation, and Experiment
,”
Mech. Syst. Signal Process
,
204
, p.
110778
.
6.
Hosseini
,
S. M.
,
2018
, “
Analytical Solution for Nonlocal Coupled Thermoelasticity Analysis in a Heat-Affected MEMS/NEMS Beam Resonator Based on Green–Naghdi Theory
,”
Appl. Math. Model.
,
57
, pp.
21
36
.
7.
Boley
,
B. A.
,
1956
, “
Thermally Induced Vibrations of Beams
,”
J. Aeronaut. Sci.
,
23
(
2
), pp.
179
181
.
8.
Manolis
,
G. D.
, and
Beskos
,
D. E.
,
1980
, “
Thermally Induced Vibrations of Beam Structures
,”
Comput. Methods Appl. Mech. Eng.
,
21
(
3
), pp.
337
355
.
9.
Kidawa-Kukla
,
J.
,
2003
, “
Application of the Green Functions to the Problem of the Thermally Induced Vibration of a Beam
,”
J. Sound Vib.
,
262
(
4
), pp.
865
876
.
10.
Kong
,
X.
, and
Wang
,
Z.
,
2014
, “
Thermally Induced Vibration Analysis of Composite Laminate Based on Equivalent Displacement Method
,”
Appl. Mech. Mater.
,
576
, pp.
87
93
.
11.
Nesarhosseini
,
S.
,
Ansari
,
R.
,
Faraji Oskouie
,
M.
, and
Rouhi
,
H.
,
2023
, “
Thermally Induced Vibration Analysis of Timoshenko Beams Based on the Micropolar Thermoelasticity
,”
Acta Mech.
,
234
(
5
), pp.
1957
1971
.
12.
Eringen
,
A. C.
,
1974
, “
Theory of Nonlocal Thermoelasticity
,”
Int. J. Eng. Sci.
,
12
(
12
), pp.
1063
1077
.
13.
Yu
,
Y. J.
,
Tian
,
X. G.
, and
Liu
,
X. R.
,
2015
, “
Size-Dependent Generalized Thermoelasticity Using Eringen's Nonlocal Model
,”
Eur. J. Mech. A/Solids
,
51
, pp.
96
106
.
14.
Blandino
,
J. R.
, and
Thornton
,
E. A.
,
2001
, “
Thermally Induced Vibration of an Internally Heated Beam
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
67
75
.
15.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
,
Pavlov
,
S. P.
,
Zhigalov
,
M. V.
,
Kalutsky
,
L. A.
, and
Krysko
,
A. V.
,
2019
, “
Thermoelastic Vibrations of a Timoshenko Microbeam Based on the Modified Couple Stress Theory
,”
Nonlinear Dyn.
,
99
(
2
), pp.
919
943
.
16.
Azimi
,
M.
,
Mirjavadi
,
S. S.
,
Shafiei
,
N.
,
Hamouda
,
A. M. S.
, and
Davari
,
E.
,
2017
, “
Vibration of Rotating Functionally Graded Timoshenko Nano-Beams With Nonlinear Thermal Distribution
,”
Mech. Adv. Mater. Struc.
,
25
(
6
), pp.
467
480
.
17.
Chen
,
C. S.
,
Chen
,
C. W.
,
Chen
,
W. R.
, and
Chang
,
Y. C.
,
2013
, “
Thermally Induced Vibration and Stability of Laminated Composite Plates With Temperature-Dependent Properties
,”
Meccanica
,
48
(
9
), pp.
2311
2323
.
18.
Tauchert
,
T. R.
,
1991
, “
Thermally Induced Flexure, Buckling, and Vibration of Plates
,”
ASME Appl. Mech. Rev.
,
44
(
8
), pp.
347
360
.
19.
Li
,
S. R.
,
Yu
,
W. S.
, and
Batra
,
R. C.
,
2010
, “
Free Vibration of Thermally Pre/Post-Buckled Circular Thin Plates Embedded With Shape Memory Alloy Fibers
,”
J. Therm. Stresses
,
33
(
2
), pp.
79
96
.
20.
Mousavi
,
S. A.
,
Rahmani
,
M.
,
Mirzarahimi
,
M. K.
, and
Moghadas
,
S. M.
,
2020
, “
The Dynamic and Vibration Response of Composite Cylindrical Shell Under Thermal Shock and Mild Heat Field
,”
J. Solid Mech.
,
12
, pp.
175
188
.
21.
Ansari
,
R.
,
Faraji Oskouie
,
M.
,
Nesarhosseini
,
S.
, and
Rouhi
,
H.
,
2021
, “
Nonlinear Thermally Induced Vibration Analysis of Porous FGM Timoshenko Beams Embedded in an Elastic Medium
,”
Transp. Porous Media
,
142
(
1–2
), pp.
63
87
.
22.
Javani
,
M.
,
Kiani
,
Y.
, and
Eslami
,
M. R.
,
2019
, “
Large Amplitude Thermally Induced Vibrations of Temperature Dependent Annular FGM Plates
,”
Compos. Part B
,
163
, pp.
371
383
.
23.
Trinh
,
L. C.
,
Vo
,
T. P.
,
Thai
,
H. T.
, and
Nguyen
,
T. K.
,
2016
, “
An Analytical Method for the Vibration and Buckling of Functionally Graded Beams Under Mechanical and Thermal Loads
,”
Compos. Part B
,
100
, pp.
152
163
.
24.
Guo
,
X. X.
,
Wang
,
Z. M.
,
Wang
,
Y.
, and
Zhou
,
Y. F.
,
2009
, “
Analysis of the Coupled Thermoelastic Vibration for Axially Moving Beam
,”
J. Sound Vib.
,
325
(
3
), pp.
597
608
.
25.
Zhao
,
X.
,
Wang
,
C. F.
,
Zhu
,
W. D.
,
Li
,
Y. H.
, and
Wan
,
X. S.
,
2021
, “
Coupled Thermoelastic Nonlocal Forced Vibration of an Axially Moving Micro/Nano-Beam
,”
Int. J. Mech. Sci.
,
206
, p.
106600
.
26.
Zhao
,
X.
,
Yang
,
E. C.
, and
Li
,
Y. H.
,
2015
, “
Analytical Solutions for the Coupled Thermoelastic Vibrations of Timoshenko Beams by Means of Green’s Functions
,”
Int. J. Mech. Sci.
,
100
, pp.
50
67
.
27.
Yang
,
Z.
,
Zhou
,
S.
,
Zu
,
J.
, and
Inman
,
D. J.
,
2018
, “
High-Performance Piezoelectric Energy Harvesters and Their Applications
,”
Joule
,
2
(
4
), pp.
642
697
.
28.
Litak
,
G.
,
Wolszczak
,
P.
,
Caban
,
J.
,
Margielewicz
,
J.
,
Gąska
,
D.
,
Ma
,
X.
, and
Zhou
,
S.
,
2022
, “
Energy Harvesting Using a Nonlinear Resonator With Asymmetric Potential Wells
,”
Energies
,
15
(
24
), p.
9469
.
29.
Zhang
,
B.
,
Zhou
,
H.
,
Zhao
,
X.
,
Gao
,
J.
, and
Zhou
,
S.
,
2023
, “
Design and Experimental Analysis of a Piezoelectric Energy Harvester Based on Stacked Piezoceramic for Nonharmonic Excitations
,”
Energy
,
282
, p.
128948
.
30.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
31.
Yang
,
Y.
, and
Tang
,
L.
,
2009
, “
Equivalent Circuit Modeling of Piezoelectric Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
20
(
18
), pp.
2223
2235
.
32.
Zhou
,
S.
, and
Zuo
,
L.
,
2018
, “
Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting
,”
Commun. Nonlinear Sci. Numer. Simul.
,
61
, pp.
271
284
.
33.
Kim
,
J.
,
Dorin
,
P.
, and
Wang
,
K. W.
,
2020
, “
Vibration Energy Harvesting Enhancement Exploiting Magnetically Coupled Bistable and Linear Harvesters
,”
Smart Mater. Struct.
,
29
(
6
), p.
065006
.
34.
Zou
,
H. X.
,
Li
,
M.
,
Zhao
,
L. C.
,
Gao
,
Q. H.
,
Wei
,
K. X.
,
Zuo
,
L.
,
Qian
,
F.
, and
Zhang
,
W. M.
,
2021
, “
A Magnetically Coupled Bistable Piezoelectric Harvester for Underwater Energy Harvesting
,”
Energy
,
217
, p.
119429
.
35.
Huang
,
D.
,
Han
,
J.
,
Zhou
,
S.
,
Han
,
Q.
,
Yang
,
G.
, and
Yurchenko
,
D.
,
2022
, “
Stochastic and Deterministic Responses of an Asymmetric Quad-Stable Energy Harvester
,”
Mech. Syst. Signal Process
,
168
, p.
108672
.
36.
Fu
,
H.
,
Mei
,
X.
,
Yurchenko
,
D.
,
Zhou
,
S.
,
Theodossiades
,
S.
,
Nakano
,
K.
, and
Yeatman
,
E. M.
,
2021
, “
Rotational Energy Harvesting for Self-Powered Sensing
,”
Joule
,
5
(
5
), pp.
1074
1118
.
37.
Dai
,
H. L.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2014
, “
Theoretical Modeling and Nonlinear Analysis of Piezoelectric Energy Harvesting From Vortex-Induced Vibrations
,”
J. Intell. Mater. Syst. Struct.
,
25
(
14
), pp.
1861
1874
.
38.
Wang
,
J.
,
Zhou
,
S.
,
Zhang
,
Z.
, and
Yurchenko
,
D.
,
2019
, “
High-Performance Piezoelectric Wind Energy Harvester With Y-Shaped Attachments
,”
Energy Convers. Manage.
,
181
, pp.
645
652
.
39.
Tian
,
H.
,
Shan
,
X.
,
Cao
,
H.
,
Song
,
R.
, and
Xie
,
T.
,
2021
, “
A Method for Investigating Aerodynamic Load Models of Piezoaeroelastic Energy Harvester
,”
J. Sound Vib.
,
502
, p.
116084
.
40.
Li
,
K.
,
Yang
,
Z.
,
Gu
,
Y.
,
He
,
S.
, and
Zhou
,
S.
,
2019
, “
Nonlinear Magnetic-Coupled Flutter-Based Aeroelastic Energy Harvester: Modeling, Simulation and Experimental Verification
,”
Smart Mater. Struct.
,
28
(
1
), p.
015020
.
41.
Li
,
K.
,
Yang
,
Z.
, and
Zhou
,
S.
,
2020
, “
Performance Enhancement for a Magnetic-Coupled Bi-Stable Flutter-Based Energy Harvester
,”
Smart Mater. Struct.
,
29
(
8
), p.
085045
.
42.
Chattopadhyay
,
A.
,
Li
,
J.
, and
Gu
,
H.
,
1999
, “
Coupled Thermo-Piezoelectric-Mechanical Model for Smart Composite Laminates
,”
AIAA J.
,
37
(
12
), pp.
1633
1638
.
43.
Li
,
P.
,
Li
,
C.
, and
Cong
,
B.
,
2018
, “
Piezoelectric-Thermo-Elastic Coupling Effect Analysis for Piezoelectric Vibration Energy Harvester
,”
Microsyst. Technol.
,
24
(
9
), pp.
3823
3832
.
44.
Grover
,
D.
, and
Sharma
,
J. N.
,
2011
, “
Transverse Vibrations in Piezothermoelastic Beam Resonators
,”
J. Intell. Mater. Syst. Struct.
,
23
(
1
), pp.
77
84
.
45.
Hooker
,
M. W.
,
1998
, “
Properties of PZT-Based Piezoelectric Ceramics Between −150 and 250 ℃
,” No. NAS 1.26: 208708, Langley Research Center.
46.
Chen
,
L. Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
ASME Appl. Mech. Rev.
,
58
(
2
), pp.
91
116
.
47.
Erhart
,
J.
,
2013
, “
Experiments to Demonstrate Piezoelectric and Pyroelectric Effects
,”
Phys. Educ.
,
48
(
4
), pp.
438
447
.
48.
Corduneanu
,
C.
,
1991
,
Integral Equations and Applications
,
Cambridge University Press
,
Cambridge, UK
.
49.
Li
,
X. Y.
,
Zhao
,
X.
, and
Li
,
Y. H.
,
2014
, “
Green's Functions of the Forced Vibration of Timoshenko Beams With Damping Effect
,”
J. Sound Vib.
,
333
(
6
), pp.
1781
1795
.
You do not currently have access to this content.