Abstract

A lightweight whole-spacecraft vibration isolation system with broadband vibration attenuation capability is of great significance to the protection of satellites during the launch phase. The emergence of metamaterials/phononic crystals provides new ideas for the design of such isolation systems. This letter reports a new type of satellite isolation system to isolate shock and vibrations in an ultrawide frequency range. The labyrinth design of this system integrates acoustic black holes (ABHs) as microstructures, which leads to a significant impedance mismatch and enhances the bandgap effect. The ultrawide vibration and shock attenuation ability of the proposed design is confirmed through band structure and transmission analyses as well as the hammer and falling tests, showing the potential for vast isolation applications.

References

1.
Wang
,
T.
,
Ding
,
Q.
,
Tang
,
Y.
, and
Ma
,
Z.-S.
,
2021
, “
Enhanced Method for Analyzing Pogo Stability of Liquid Rockets With Uncertain-But-Bounded Parameters
,”
J. Spacecr. Rockets
,
59
(
3
), pp.
728
738
.
2.
Zhang
,
J. H.
,
2005
, “
Pyroshock Environment of Missiles and Launch Vehicles
,”
Missiles Space Veh.
,
276
(
3
), pp.
30
36
.
3.
N.T. Standard, Pyroshock Test Criteria
,
2011
, NASA-STD-7003A.
4.
Zhao
,
H.
,
Hao
,
Z.
,
Liu
,
W.
,
Ding
,
J.
,
Sun
,
Y.
,
Zhang
,
Q.
, and
Liu
,
Y.
,
2019
, “
The Shock Environment Prediction of Satellite in the Process of Satellite-Rocket Separation
,”
Acta Astronaut.
,
159
, pp.
112
122
.
5.
Johnson
,
C. D.
, and
Wilke
,
P. S.
,
2001
, “
Recent Launches Using the SoftRide Whole-Spacecraft Vibration Isolation System
,”
AIAA Space 2001 Conference and Exposition
,
Albuquerque, NM
,
Aug. 28–30
, A01-40248.
6.
Johnson
,
C. D.
, and
Wilke
,
P. S.
,
2002
, “
Whole-Spacecraft Shock Isolation System
,”
Proceedings of the SPIE's 9th Annual International Symposium on Smart Structures and Materials
,
San Diego, CA
,
Mar. 17–21
, p.
4697
.
7.
Zhang
,
Z.
,
Qin
,
Z.
,
Xiao
,
J.
, and
Li
,
H.
,
2020
, “
Pyroshock Isolation of Spacecraft
,”
J. Shock Vib.
,
39
(
18
), p.
169
.
8.
Wang
,
X.
,
Yu
,
T.
,
Yan
,
H.
,
Ding
,
J.
,
Li
,
Z.
,
Qin
,
Z.
, and
Chu
,
F.
,
2021
, “
Application of Stress Wave Theory for Pyroshock Isolation at Spacecraft-Rocket Interface
,”
Chin. J. Aeronaut.
,
34
(
8
), pp.
75
86
.
9.
Park
,
Y. H.
,
Kwon
,
S. C.
,
Koo
,
K. R.
, and
Oh
,
H. U.
,
2021
, “
High Damping Passive Launch Vibration Isolation System Using Superelastic SMA With Multilayered Viscous Lamina
,”
Aerospace
,
8
(
8
), p.
201
.
10.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
Negative Refraction of Elastic Waves at the Deep-Subwavelength Scale in a Single-Phase Metamaterial
,”
Nat. Commun.
,
5
(
1
), p.
5510
.
11.
Hwang
,
M.
, and
Arrieta
,
A. F.
,
2021
, “
Extreme Frequency Conversion From Soliton Resonant Interactions
,”
Phys. Rev. Lett.
,
126
(
7
), p.
073902
.
12.
Ma
,
G. C.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.
13.
Fischer
,
S. C. L.
,
Hillen
,
L.
, and
Eberl
,
C.
,
2020
, “
Mechanical Metamaterials on the Way From Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability
,”
Materials
,
13
(
16
), p.
3605
.
14.
Lu
,
M. H.
,
Feng
,
L.
, and
Chen
,
Y. F.
,
2009
, “
Phononic Crystals and Acoustic Metamaterials
,”
Mater. Today
,
12
(
12
), pp.
34
42
.
15.
Wu
,
L.
,
Wang
,
Y.
,
Chuang
,
K.
,
Wu
,
F.
,
Wang
,
Q.
,
Lin
,
W.
, and
Jiang
,
H.
,
2021
, “
A Brief Review of Dynamic Mechanical Metamaterials for Mechanical Energy Manipulation
,”
Mater. Today
,
44
, pp.
168
193
.
16.
Song
,
A. L.
,
Chen
,
T. N.
,
Wang
,
X. P.
, and
Wan
,
L. L.
,
2016
, “
Waveform-preserved Unidirectional Acoustic Transmission Based on Impedance-Matched Acoustic Metasurface and Phononic Crystal
,”
J. Appl. Phys.
,
120
(
8
), p.
085106
.
17.
Jiang
,
T.
,
He
,
Q.
, and
Peng
,
Z.-K.
,
2019
, “
Proposal for the Realization of a Single-Detector Acoustic Camera Using a Space-Coiling Anisotropic Metamaterial
,”
Phys. Rev. Appl.
,
11
(
3
), p.
034013
.
18.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J. O.
,
Larabi
,
H.
,
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
, and
Laude
,
V.
,
2005
, “
Acoustic Channel Drop Tunneling in a Phononic Crystal
,”
Appl. Phys. Lett.
,
87
(
26
), p.
141
.
19.
Wang
,
Y. F.
,
Wang
,
Y. S.
, and
Zhang
,
C.
,
2016
, “
Two-Dimensional Locally Resonant Elastic Metamaterials With Chiral Comb-Like Interlayers: Bandgap and Simultaneously Double Negative Properties
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3311
3319
.
20.
Zhao
,
G.
, and
Bi
,
S.
,
2019
, “
Negative Refraction Characteristics of a Kind of Concave Metamaterial
,”
J. Appl. Phys.
,
125
(
16
), p.
165106
.
21.
Wen
,
G.
,
Ou
,
H.
, and
Liu
,
J.
,
2020
, “
Ultra-Wide Band gap in a Two-Dimensional Phononic Crystal With Hexagonal Lattices
,”
Mater. Today Commun.
,
24
, p.
100977
.
22.
Li
,
Y.
,
Baker
,
E.
,
Reissman
,
T.
,
Sun
,
C.
, and
Liu
,
W. K.
,
2017
, “
Design of Mechanical Metamaterials for Simultaneous Vibration Isolation and Energy Harvesting
,”
Appl. Phys. Lett.
,
111
(
25
), p.
251903
.
23.
De Ponti
,
J. M.
,
Paderno
,
N.
,
Ardito
,
R.
,
Braghin
,
F.
, and
Corigliano
,
A.
,
2019
, “
Experimental and Numerical Evidence of Comparable Levels of Attenuation in Periodic and a-Periodic Metastructures
,”
Appl. Phys. Lett.
,
115
(
3
), p.
031901
.
24.
Zhao
,
C.
,
Gao
,
X.
,
Wang
,
L.
,
Yi
,
Q.
, and
Wang
,
P.
,
2020
, “
A Study of the Vibration Isolation Performance of a Limited Phononic Crystal Vibration Isolator Based on Local Resonance Theory
,”
J. Appl. Phys.
,
128
(
13
), p.
134903
.
25.
Aravantinos-Zafiris
,
N.
,
Kanistras
,
N.
, and
Sigalas
,
M. M.
,
2021
, “
Acoustoelastic Phononic Metamaterial for Isolation of Sound and Vibrations
,”
J. Appl. Phys.
,
129
(
10
), p.
105108
.
26.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), p.
16001
.
27.
Jia
,
Z.
,
Chen
,
Y. Y.
,
Yang
,
H. X.
, and
Wang
,
L. F.
,
2018
, “
Designing Phononic Crystals With Wide and Robust Band Gaps
,”
Phys. Rev. Appl.
,
9
(
4
), p.
044021
.
28.
Zhang
,
Q.
,
Guo
,
D.
, and
Hu
,
G.
,
2021
, “
Tailored Mechanical Metamaterials With Programmable Quasi-Zero-Stiffness Features for Full-Band Vibration Isolation
,”
Adv. Funct. Mater.
,
31
(
33
), p.
2101428
.
29.
Zhu
,
H.
, and
Semperlotti
,
F.
,
2016
, “
Anomalous Refraction of Acoustic Guided Waves in Solids With Geometrically Tapered Metasurfaces
,”
Phys. Rev. Lett.
,
117
(
3
), p.
034302
.
30.
Zhu
,
H. F.
, and
Semperlotti
,
F.
,
2017
, “
Two-Dimensional Structure-Embedded Acoustic Lenses Based on Periodic Acoustic Black Holes
,”
J. Appl. Phys.
,
122
(
6
), p.
065104
.
31.
Lyu
,
X.
,
Ding
,
Q.
, and
Yang
,
T.
,
2019
, “
Merging Phononic Crystals and Acoustic Black Holes
,”
Appl. Math. Mech. (Engl. Ed.)
,
41
(
2
), pp.
279
288
.
32.
Lyu
,
X.
,
Li
,
H.
,
Ma
,
Z.
,
Ding
,
Q.
,
Yang
,
T.
,
Chen
,
L.
, and
Żur
,
K. K.
,
2021
, “
Numerical and Experimental Evidence of Topological Interface State in a Periodic Acoustic Black Hole
,”
J. Sound Vib.
,
514
, p.
116432
.
33.
Lyu
,
X.
,
Ding
,
Q.
,
Ma
,
Z.
, and
Yang
,
T.
,
2021
, “
Ultra-Wide Bandgap in Two-Dimensional Metamaterial Embedded With Acoustic Black Hole Structures
,”
Appl. Sci.
,
11
(
24
), p.
11788
.
34.
Tang
,
L.
, and
Cheng
,
L.
,
2017
, “
Ultrawide Band Gaps in Beams With Double-Leaf Acoustic Black Hole Indentations
,”
J. Acoust. Soc. Am.
,
142
(
5
), pp.
2802
2807
.
35.
Tang
,
L.
, and
Cheng
,
L.
,
2019
, “
Periodic Plates With Tunneled Acoustic-Black-Holes for Directional Band Gap Generation
,”
Mech. Syst. Signal Process.
,
133
, p.
106257
.
36.
Li
,
X.
, and
Ding
,
Q.
,
2018
, “
Analysis on Vibration Energy Concentration of the One-Dimensional Wedge-Shaped Acoustic Black Hole Structure
,”
J. Intell. Mater. Syst. Struct.
,
29
(
10
), pp.
2137
2148
.
You do not currently have access to this content.