Abstract

In this study, a nonlinear dynamic model of a spur gear transmission system with non-uniform wear is proposed to analyze the interaction between surface wear and nonlinear dynamic characteristics. A quasi-static non-uniform wear model is presented, with consideration of the effects of operating time on mesh stiffness and gear backlash. Furthermore, a nonlinear dynamic model with six degrees-of-freedom is established considering surface friction, time-varying gear backlash, time-varying mesh stiffness, and eccentricity, and the Runge–Kutta method applied to solve this model. The bifurcation and chaos in the proposed dynamic model with the change of the operating time and the excitation frequency are investigated by bifurcation and spectrum waterfall diagrams to analyze the bifurcation characteristics and the dimensionless mesh force. It is found that surface wear is generated with a change in operating time and affects the nonlinear dynamic characteristics of the spur gear system. This study provides a better understanding of nonlinear dynamic characteristics of gear transmission systems operating under actual conditions.

References

1.
Kahraman
,
A.
,
1994
, “
Load Sharing Characteristics of Planetary Transmissions
,”
Mech. Mach. Theory
,
29
(
8
), pp.
1151
1165
. 10.1016/0094-114X(94)90006-X
2.
Saada
,
A.
, and
Velex
,
P.
,
1995
, “
An Extended Model for the Analysis of the Dynamic Behavior of Planetary Trains
,”
J. Mech. Des.—Trans. ASME
,
117
(
2
), pp.
241
247
. 10.1115/1.2826129
3.
Jian
,
L.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
J. Vib. Acoust.—Trans. ASME
,
121
(
3
), pp.
316
321
. 10.1115/1.2893982
4.
Farshidianfar
,
A.
, and
Saghafi
,
A.
,
2014
, “
Global Bifurcation and Chaos Analysis in Nonlinear Vibration of Spur Gear Systems
,”
Nonlinear Dyn.
,
75
(
4
), pp.
783
806
. 10.1007/s11071-013-1104-4
5.
Gou
,
X.
,
Zhu
,
L.
, and
Chen
,
D.
,
2015
, “
Bifurcation and Chaos Analysis of Spur Gear Pair in Two-Parameter Plane
,”
Nonlinear Dyn.
,
79
(
3
), pp.
2225
2235
. 10.1007/s11071-014-1807-1
6.
Li
,
Z.
, and
Peng
,
Z.
,
2015
, “
Nonlinear Dynamic Response of a Multi-Degree of Freedom Gear System Dynamic Model Coupled With Tooth Surface Characters: A Case Study on Coal Cutters
,”
Nonlinear Dyn.
,
84
(
1
), pp.
1
16
. 10.1007/s11071-015-2475-5
7.
Wang
,
J.
,
He
,
G.
,
Zhang
,
J.
, and
Zhao
,
Y.
,
2017
, “
Nonlinear Dynamics Analysis of the Spur Gear System for Railway Locomotive
,”
Mech. Syst. Sig. Process.
,
85
(
2
), pp.
41
55
. 10.1016/j.ymssp.2016.08.004
8.
Xiang
,
L.
,
Zhang
,
Y.
,
Gao
,
N.
,
Hu
,
A.
, and
Xing
,
J.
,
2018
, “
Nonlinear Dynamics of a Multistage Gear Transmission System With Multi-Clearance
,”
Int. J. Bifurcation Chaos
,
28
(
3
), p.
1850034
. 10.1142/S0218127418500347
9.
Hou
,
L.
, and
Cao
,
S.
,
2019
, “
Nonlinear Dynamic Analysis on Planetary Gears-Rotor System in Geared Turbofan Engines
,”
Int. J. Bifurcation Chaos
,
29
(
6
), p.
1950076
. 10.1142/S0218127419500767
10.
Sheng
,
L.
,
Li
,
W.
,
Wang
,
Y.
,
Fan
,
M.
, and
Yang
,
X.
,
2019
, “
Nonlinear Dynamic Analysis and Chaos Control of Multi-Freedom Semi-Direct Gear Drive System in Coal Cutters
,”
Mech. Syst. Sig. Process.
,
116
, pp.
62
77
. 10.1016/j.ymssp.2018.06.043
11.
Mao
,
K.
,
Li
,
W.
,
Hooke
,
C. J.
, and
Walton
,
D.
,
2009
, “
Friction and Wear Behaviour of Acetal and Nylon Gears
,”
Wear
,
267
(
1
), pp.
639
645
. 10.1016/j.wear.2008.10.005
12.
TunalioğLu
,
, and
Tuç
,
B.
,
2014
, “
Theoretical and Experimental Investigation of Wear in Internal Gears
,”
Wear
,
309
(
1–2
), pp.
208
215
. 10.1016/j.wear.2013.11.016
13.
Wojnarowski
,
J.
, and
Onishchenko
,
V.
,
2003
, “
Tooth Wear Effects on Spur Gear Dynamics
,”
Mech. Mach. Theory
,
38
(
2
), pp.
161
178
. 10.1016/S0094-114X(02)00091-5
14.
Kuang
,
J. H.
, and
Lin
,
A.
,
2001
, “
The Effect of Tooth Wear on the Vibration Spectrum of a Spur Gear Pair
,”
J. Vib. Acoust.—Trans. ASME
,
123
(
3
), pp.
311
317
. 10.1115/1.1379371
15.
Flodin
,
A.
, and
Andersson
,
S.
,
1997
, “
Simulation of Mild Wear in Spur Gears
,”
Wear
,
207
(
1–2
), pp.
16
23
. 10.1016/S0043-1648(96)07467-4
16.
Flodin
,
A.
, and
Andersson
,
S.
,
2000
, “
Simulation of Mild Wear in Helical Gears
,”
Wear
,
241
(
2
), pp.
123
128
. 10.1016/S0043-1648(00)00384-7
17.
Yuksel
,
C.
, and
Kahraman
,
A.
,
2004
, “
Dynamic Tooth Loads of Planetary Gear Sets Having Tooth Profile Wear
,”
Mech. Mach. Theory
,
39
(
7
), pp.
695
715
. 10.1016/j.mechmachtheory.2004.03.001
18.
Ding
,
H.
, and
Kahraman
,
A.
,
2007
, “
Interactions Between Nonlinear Spur Gear Dynamics and Surface Wear
,”
J. Sound Vib.
,
307
(
3–5
), pp.
662
679
. 10.1016/j.jsv.2007.06.030
19.
Kahraman
,
A.
, and
Ding
,
H.
,
2010
, “
A Methodology to Predict Surface Wear of Planetary Gears Under Dynamic Conditions
,”
Mech. Based Des. Struct. Mach.
,
38
(
4
), pp.
493
515
. 10.1080/15397734.2010.501312
20.
Zhang
,
J.
, and
Liu
,
X.
,
2015
, “
Effects of Misalignment on Surface Wear of Spur Gears
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
229
(
9
), pp.
1145
1158
. 10.1177/1350650115574732
21.
Liu
,
X.
,
Yang
,
Y.
, and
Zhang
,
J.
,
2016
, “
Investigation on Coupling Effects Between Surface Wear and Dynamics in a Spur Gear System
,”
Tribol. Int.
,
101
, pp.
383
394
. 10.1016/j.triboint.2016.05.006
22.
Zhou
,
C.
, and
Wang
,
H.
,
2018
, “
An Adhesive Wear Prediction Method for Double Helical Gears Based on Enhanced Coordinate Transformation and Generalized Sliding Distance Model
,”
Mech. Mach. Theory
,
128
, pp.
58
83
. 10.1016/j.mechmachtheory.2018.05.010
23.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
. 10.1063/1.1721448
24.
Wei
,
J.
,
Zhang
,
A.
, and
Gao
,
P.
,
2015
, “
A Study of Spur Gear Pitting Under EHL Conditions: Theoretical Analysis and Experiments
,”
Tribol. Int.
,
94
, pp.
146
154
. 10.1016/j.triboint.2015.08.037
25.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
26.
Spitas
,
C.
, and
Spitas
,
V.
,
2006
, “
Calculation of Overloads Induced by Indexing Errors in Spur Gearboxes Using Multi-Degree-of-Freedom Dynamical Simulation
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
220
(
4
), pp.
273
282
. 10.1243/1464419JMBD67
27.
Spitas
,
C.
, and
Spitas
,
V.
,
2016
, “
Coupled Multi-DOF Dynamic Contact Analysis Model for the Simulation of Intermittent Gear Tooth Contacts, Impacts and Rattling Considering Backlash and Variable Torque
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
230
(
7–8
), pp.
1022
1047
. 10.1177/0954406215596696
28.
Benatar
,
M.
,
Handschuh
,
M.
,
Kahraman
,
A.
, and
Talbot
,
D.
,
2019
, “
Static and Dynamic Transmission Error Measurements of Helical Gear Pairs With Various Tooth Modifications
,”
ASME J. Mech. Des.
,
141
(
10
), p.
103301
. 10.1115/1.4043586
29.
Chen
,
Z.
, and
Shao
,
Y.
,
2011
, “
Dynamic Simulation of Spur Gear With Tooth Root Crack Propagating Along Tooth Width and Crack Depth
,”
Eng. Failure Anal.
,
18
(
8
), pp.
2149
2164
. 10.1016/j.engfailanal.2011.07.006
30.
Chen
,
Z.
, and
Shao
,
Y.
,
2013
, “
Mesh Stiffness Calculation of a Spur Gear Pair With Tooth Profile Modification and Tooth Root Crack
,”
Mech. Mach. Theory
,
62
, pp.
63
74
. 10.1016/j.mechmachtheory.2012.10.012
31.
Chen
,
Z.
, and
Shao
,
Y.
,
2015
, “
Dynamic Features of Planetary Gear Train With Tooth Errors
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
229
(
10
), pp.
1769
1781
. 10.1177/0954406214549503
32.
Wang
,
Q.
, and
Zhang
,
Y.
,
2017
, “
A Model for Analyzing Stiffness and Stress in a Helical Gear Pair With Tooth Profile Errors
,”
J. Vib. Control
,
23
(
2
), pp.
272
289
. 10.1177/1077546315576828
33.
Liu
,
G.
,
Hong
,
J.
, and
Parker
,
R. G.
,
2019
, “
Influence of Simultaneous Time-Varying Bearing and Tooth Mesh Stiffness Fluctuations on Spur Gear Pair Vibration
,”
Nonlinear Dyn.
,
97
(
2
), pp.
1403
1424
. 10.1007/s11071-019-05056-9
34.
Sakaridis
,
E.
,
Spitas
,
V.
, and
Spitas
,
C.
,
2019
, “
Non-Linear Modeling of Gear Drive Dynamics Incorporating Intermittent Tooth Contact Analysis and Tooth Eigenvibrations
,”
Mech. Mach. Theory
,
136
, pp.
307
333
. 10.1016/j.mechmachtheory.2019.03.012
35.
Xiao
,
Z.
,
Zhou
,
C.
,
Chen
,
S.
, and
Li
,
Z.
,
2019
, “
Effects of Oil Film Stiffness and Damping on Spur Gear Dynamics
,”
Nonlinear Dyn.
,
96
(
1
), pp.
145
159
. 10.1007/s11071-019-04780-6
36.
Chen
,
Z.
,
Zhou
,
Z.
,
Zhai
,
W.
, and
Wang
,
K.
,
2020
, “
Improved Analytical Calculation Model of Spur Gear Mesh Excitations With Tooth Profile Deviations
,”
Mech. Mach. Theory
,
149
.
103838
.
37.
Cao
,
Z.
,
Shao
,
Y.
,
Rao
,
M.
, and
Yu
,
W.
,
2018
, “
Effects of the Gear Eccentricities on the Dynamic Performance of a Planetary Gear Set
,”
Nonlinear Dyn.
,
91
(
1
), pp.
1
15
. 10.1007/s11071-017-3738-0
38.
Chaari
,
F.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2009
, “
Analytical Modelling of Spur Gear Tooth Crack and Influence on Gearmesh Stiffness
,”
Eur. J. Mech. A—Solid
,
28
(
3
), pp.
461
468
. 10.1016/j.euromechsol.2008.07.007
39.
Siyu
,
C.
,
Jinyuan
,
T.
,
Caiwang
,
L.
, and
Qibo
,
W.
,
2011
, “
Nonlinear Dynamic Characteristics of Geared Rotor Bearing Systems With Dynamic Backlash and Friction
,”
Mech. Mach. Theory
,
46
(
4
), pp.
466
478
. 10.1016/j.mechmachtheory.2010.11.016
You do not currently have access to this content.