Abstract

Two widely used semi-analytical methods: the incremental harmonic balance (IHB) method and alternating frequency/time-domain (AFT) method are compared, and some long-standing discussions on frameworks of these two methods are cleared up. The IHB and AFT methods are proved for the first time to be theoretically equivalent when spectrum aliasing does not occur in the AFT method. Based on this equivalence, the minimal nonaliasing sampling rate for the AFT and fast Fourier transform (FFT)-based IHB methods can be obtained for a system with polynomial nonlinearities. While spectrum aliasing is theoretically inevitable for nonpolynomial nonlinearities, a sufficiently large sampling rate can be usually used with acceptable accuracy and efficiency for many systems. Convergence and efficiency of the IHB method, AFT method, and several FFT-based IHB methods are compared. Accuracy and convergence can be affected when the sampling rate is insufficient. This comparison can provide some insights to avoid misuse of these methods and choose which methods to use in engineering applications.

References

1.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
. 10.1115/1.3157762
2.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady–State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
. 10.1115/1.3176036
3.
Leung
,
A. Y. T.
,
1989
, “
Nonlinear Natural Vibration Analysis of Beams by Selective Coefficient Increment
,”
Comput. Mech.
,
5
(
1
), pp.
73
80
. 10.1007/BF01046880
4.
Huang
,
J. L.
,
Su
,
R. K. L.
,
Li
,
W. H.
, and
Chen
,
S. H.
,
2011
, “
Stability and Bifurcation of an Axially Moving Beam Tuned to Three-to-One Internal Resonances
,”
J. Sound Vib.
,
330
(
3
), pp.
471
485
. 10.1016/j.jsv.2010.04.037
5.
Wang
,
S.
,
Hua
,
L.
,
Yang
,
C.
,
Zhang
,
Y.
, and
Tan
,
X.
,
2018
, “
Nonlinear Vibrations of a Piecewise-Linear Quarter-Car Truck Model by Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
92
(
4
), pp.
1719
1732
. 10.1007/s11071-018-4157-6
6.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
909
916
. 10.1115/1.2893919
7.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
. 10.1016/0022-460X(90)90528-8
8.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2014
, “
Nonlinear Dynamics of a High-Dimensional Model of a Rotating Euler–Bernoulli Beam Under the Gravity Load
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101007
. 10.1115/1.4028046
9.
Zhao
,
Q.
,
Liu
,
Z. L.
,
He
,
Y. H.
,
Yao
,
H. L.
, and
Wen
,
B. C.
,
2016
, “
Dynamic Stress Prediction Method for Rubbing Blades
,”
J. Vib. Eng.
,
18
(
1
), pp.
1
12
.
10.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
,
1995
, “
Non-Linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
181
(
4
), pp.
619
633
. 10.1006/jsvi.1995.0162
11.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden’s Method
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
981
989
. 10.1007/s11071-015-2045-x
12.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2020
, “
An Efficient Galerkin Averaging–Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Tensor Contraction
,”
ASME J. Vib. Acoust.
,
142
(
6
), p.
061011
. 10.1115/1.4047235
13.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
,
58
(
10
), pp.
545
553
. 10.1115/1.2897218
14.
Lu
,
K.
,
Jin
,
Y.
,
Chen
,
Y. S.
,
Cao
,
Q. J.
, and
Zhang
,
Z.
,
2015
, “
Stability Analysis of Reduced Rotor Pedestal Looseness Fault Model
,”
Nonlinear Dyn.
,
82
(
4
), pp.
1611
1622
. 10.1007/s11071-015-2264-1
15.
Van Til
,
J.
,
Alijani
,
F.
,
Voormeeren
,
S. N.
, and
Lacarbonara
,
W.
,
2018
, “
Frequency Domain Modeling of Nonlinear End Stop Behavior in Tuned Mass Damper Systems Under Single and Multi-Harmonic Excitations
,”
J. Sound Vib.
,
438
, pp.
139
152
. 10.1016/j.jsv.2018.09.015
16.
Zhang
,
Z.
,
Chen
,
Y.
, and
Cao
,
Q. J.
,
2015
, “
Bifurcations and Hysteresis of Varying Compliance Vibrations in the Primary Parametric Resonance for a Ball Bearing
,”
J. Sound Vib.
,
350
, pp.
171
184
. 10.1016/j.jsv.2015.04.003
17.
Proakis
,
J. G.
, and
Manolakis
,
D. K.
,
2007
,
Digital Signal Processing
,
Pearson Prentice Hall
,
NJ
.
18.
Rand
,
R. H.
, and
Holmes
,
P.
,
1980
, “
Bifurcation of Periodic Motions in Two Weakly Coupled van der Pol Oscillators
,”
Int. J. Nonlin. Mech.
,
15
(
4–5
), pp.
387
399
. 10.1016/0020-7462(80)90024-4
19.
Zhang
,
D. W.
,
Liu
,
J. K.
,
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2018
, “
Periodic Responses of a Rotating Hub-Beam System With a Tip Mass Under Gravity Loads by the Incremental Harmonic Balance Method
,”
Shock Vib.
,
2018
, pp.
1
18
.10.1155/2018/8178274
20.
Xu
,
G. Y.
, and
Zhu
,
W. D.
,
2010
, “
Nonlinear and Time-Varying Dynamics of High-Dimensional Models of a Translating Beam With a Stationary Load Subsystem
,”
J. Vib. Acoust.
,
132
(
6
), pp.
323
342
.
21.
Rao
,
K. R.
,
Kim
,
D. N.
, and
Hwang
,
J. J.
,
2010
,
Fast Fourier Transform—Algorithms and Applications
,
Springer
,
New York
.
22.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1983
, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
871
876
. 10.1115/1.3167160
23.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for a Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
. 10.1007/BF01858295
24.
Zhu
,
Z.
, and
Zhong
,
L.
,
1996
, “
Higher-Order Spectral Analysis of Ueda's Circuit
,”
Proceedings of the International Conference on Signal Processing
,
Beijing, China
,
Oct. 14–18
, pp.
549
552
.
You do not currently have access to this content.