Abstract

The acoustic energy attenuation capabilities of traditional Helmholtz resonators are enhanced by various methods, including by coupled resonators, absorbing materials, or replacement of rigid walls with flexible structures. Drawing from these concepts to envision a new platform of adaptive Helmholtz resonator, this research studies an adaptive acoustic resonator with an internal compliant structural member. The interaction between the structure and acoustic domain is controlled by compression constraint. By applying uniaxial compression to the resonator, the flexible member may be buckled, which drastically tailors the acoustic-structure interaction mechanisms in the overall system. A phenomenological analytical model is formulated and experimentally validated to scrutinize these characteristics. It is found that the compression constraint may enhance damping capabilities of the resonator by adapting the acoustic-structure interaction between the resonator and the enclosure. The area ratio of the flexible member to the resonator opening and the ratio of the fundamental natural frequency of the flexible member to that of the enclosure are discovered to have a significant influence on the system behavior. These results reveal new avenues for acoustic resonator concepts exploiting compliant internal structures to tailor acoustic energy attenuation properties.

References

1.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
,
John Wiley and Sons
,
New York
.
2.
Blackstock
,
D. T.
,
2000
,
Fundamentals of Physical Acoustics
,
Wiley
,
New York
.
3.
Nudehi
,
S. S.
,
Duncan
,
G. S.
, and
Farooq
,
U.
,
2013
, “
Modeling and Experimental Investigation of a Helmholtz Resonator With a Flexible Plate
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041102
. 10.1115/1.4023810
4.
Sanada
,
A.
, and
Tanaka
,
N.
,
2013
, “
Extension of the Frequency Range of Resonant Sound Absorbers Using Two-Degree-of-Freedom Helmholtz-Based Resonators With a Flexible Panel
,”
Appl. Acoust.
,
74
(
4
), pp.
509
516
. 10.1016/j.apacoust.2012.09.012
5.
Zhang
,
H.
,
Wei
,
Z.
,
Zhang
,
X.
,
Fan
,
L.
,
Qu
,
J.
, and
Zhang
,
S.
,
2017
, “
Tunable Acoustic Filters Assisted by Coupling Vibrations of a Flexible Helmholtz Resonator and a Waveguide
,”
Appl. Phys. Lett.
,
110
(
17
).
6.
Park
,
C. M.
,
Park
,
J. J.
,
Lee
,
S. H.
,
Seo
,
Y. M.
,
Kim
,
C. K.
, and
Lee
,
S. H.
,
2011
, “
Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs
,”
Phys. Rev. Lett.
,
107
(
19
).
7.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2010
, “
Composite Acoustic Medium With Simultaneously Negative Density and Modulus
,”
Phys. Rev. Lett.
,
104
(
5
), p.
054301
. 10.1103/PhysRevLett.104.054301
8.
Kurdi
,
M.
,
Nudehi
,
S.
, and
Duncan
,
G. S.
,
2019
, “
Tailoring Plate Thickness of a Helmholtz Resonator for Improved Sound Attenuation
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
034502
. 10.1115/1.4042519
9.
Gourdon
,
E.
,
Savadkoohi
,
A. T.
, and
Vargas
,
V. A.
,
2018
, “
Targeted Energy Transfer From One Acoustical Mode to an Helmholtz Resonator With Nonlinear Behavior
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061005
. 10.1115/1.4039960
10.
Tang
,
P. K.
, and
Sirignano
,
W. A.
,
1973
, “
Theory of a Generalized Helmholtz Resonator
,”
J. Sound Vib.
,
26
(
2
), pp.
247
262
. 10.1016/S0022-460X(73)80234-2
11.
Selamet
,
A.
,
Xu
,
M. B.
,
Lee
,
I.-J.
, and
Huff
,
N. T.
,
2005
, “
Helmholtz Resonator Lined With Absorbing Material
,”
J. Acoust. Soc. Am.
,
117
(
2
), pp.
725
733
. 10.1121/1.1841571
12.
Li
,
D.
, and
Cheng
,
L.
,
2007
, “
Acoustically Coupled Model of an Enclosure and a Helmholtz Resonator Array
,”
J. Sound Vib.
,
305
(
1–2
), pp.
272
288
. 10.1016/j.jsv.2007.04.009
13.
Zhao
,
D.
, and
Morgans
,
A. S.
,
2009
, “
Tuned Passive Control of Combustion Instabilities Using Multiple Helmholtz Resonators
,”
J. Sound Vib.
,
320
(
4–5
), pp.
744
757
. 10.1016/j.jsv.2008.09.006
14.
Griffin
,
S.
,
Lane
,
S. A.
, and
Huybrechts
,
S.
,
2001
, “
Coupled Helmholtz Resonators for Acoustic Attenuation
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
11
17
. 10.1115/1.1320812
15.
Tang
,
S. K.
,
Ng
,
C. H.
, and
Lam
,
E. Y. L.
,
2012
, “
Experimental Investigation of the Sound Absorption Performance of Compartmented Helmholtz Resonators
,”
Appl. Acoust.
,
73
(
9
), pp.
969
976
. 10.1016/j.apacoust.2012.03.016
16.
Kurdi
,
M. H.
,
Duncan
,
G. S.
, and
Nudehi
,
S. S.
,
2014
, “
Optimal Design of a Helmholtz Resonator With a Flexible End Plate
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031004
. 10.1115/1.4026849
17.
Lyon
,
R. H.
,
1963
, “
Noise Reduction of Rectangular Enclosures With one Flexible Wall
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1791
1797
. 10.1121/1.1918822
18.
Hu
,
N.
, and
Burgueño
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
063001
. 10.1088/0964-1726/24/6/063001
19.
Kochmann
,
D. M.
, and
Bertoldi
,
K.
,
2017
, “
Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions
,”
ASME Appl. Mech. Rev.
,
69
(
5
), p.
050801
. 10.1115/1.4037966
20.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
014301
. 10.1103/PhysRevLett.113.014301
21.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
Weinheim
.
22.
Cui
,
S.
, and
Harne
,
R. L.
,
2018
, “
Characterizing the Nonlinear Response of Elastomeric Material Systems Under Critical Point Constraints
,”
Int. J. Solids Struct.
,
135
, pp.
197
207
. 10.1016/j.ijsolstr.2017.11.020
23.
Wang
,
L.
, and
Bertoldi
,
K.
,
2012
, “
Mechanically Tunable Phononic Band Gaps in Three-Dimensional Periodic Elastomeric Structures
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2881
2885
. 10.1016/j.ijsolstr.2012.05.008
24.
Pai
,
P. F.
,
2010
, “
Metamaterial-Based Broadband Elastic Wave Absorber
,”
J. Intell. Mater. Syst. Struct.
,
21
(
5
), pp.
517
528
. 10.1177/1045389X09359436
25.
Ingard
,
U.
,
1953
, “
On the Theory and Design of Acoustic Resonators
,”
J. Acoust. Soc. Am.
,
25
(
6
), pp.
1037
1061
. 10.1121/1.1907235
26.
Xu
,
M. B.
,
Selamet
,
A.
, and
Kim
,
H.
,
2010
, “
Dual Helmholtz Resonator
,”
Appl. Acoust.
,
71
(
9
), pp.
822
829
. 10.1016/j.apacoust.2010.04.007
27.
Leissa
,
A. W.
,
1969
,
Vibration of Plates
,
Scientific and Technical Information Division, National Aeronautics and Space Administration
,
Washington, DC
.
28.
Virgin
,
L. N.
,
2007
,
Vibration of Axially Loaded Structures
,
Cambridge University Press
,
Cambridge
.
29.
Leissa
,
A. W.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
. 10.1016/S0022-460X(73)80371-2
30.
Hodges
,
D. H.
,
1984
, “
Proper Definition of Curvature in Nonlinear Beam Kinematics
,”
AIAA J.
,
22
(
12
), pp.
1825
1827
. 10.2514/3.8861
31.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics: for Vibration Control, Energy Harvesting and Sensing
,
John Wiley & Sons Ltd
,
Chichester
.
32.
Rao
,
S. S.
,
2004
,
Mechanical Vibrations
, 4th ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
33.
Lakes
,
R. S.
,
2001
, “
Extreme Damping in Compliant Composites With a Negative-Stiffness Phase
,”
Philos. Mag. Lett.
,
81
(
2
), pp.
95
100
. 10.1080/09500830010015332
34.
Bishop
,
J.
,
Dai
,
Q.
,
Song
,
Y.
, and
Harne
,
R. L.
,
2016
, “
Resilience to Impact by Extreme Energy Absorption in Lightweight Material Inclusions Constrained Near a Critical Point
,”
Adv. Eng. Mater.
,
18
(
11
), pp.
1871
1876
. 10.1002/adem.201600501
35.
Zhao
,
D.
,
A’Barrow
,
C.
,
Morgans
,
A. S.
, and
Carrotte
,
J.
,
2009
, “
Acoustic Damping of a Helmholtz Resonator With an Oscillating Volume
,”
AIAA J.
,
47
(
7
), pp.
1672
1679
. 10.2514/1.39704
You do not currently have access to this content.