Abstract

The electromagnetic coupling effect can generate electromagnetic damping to suppress disturbance, which can be utilized for vibration serviceability control in civil engineering structures. An electrodynamic actuator is used as a passive electromagnetic damper (EMD). Ideally, the EMD is assumed to be attached between the ground and the structure. The kinetic energy of the vibrating structure can be converted to electrical energy to activate the electromagnetic damping. To induce appropriate damping, the two terminals of the damper need to be closed and cascaded with a resonant shunt circuit as an electromagnetic shunt damper (EMSD). In this study, an resistance–inductance–capacitance (RLC) oscillating circuit is chosen. For determination of optimal circuit components and comparing against the tuned mass damper (TMD), existing H design formulae are applied. This work extends this with a detailed development of an H2 robust optimization technique. The dynamic properties of a footbridge structure are then selected and used to verify the EMSD optimal design numerically. The vibration suppression performance is analytically equivalent to the dynamic characteristic of the TMD and has feasible installation and better damping enhancement. To further evaluate the potential application of the EMSD, multi-vibration mode manipulation via connecting multiple RLC resonant shunt circuits is adopted. The multiple RLC shunt circuit connecting to EMD is an alternative to the single mode control of a traditional TMD. Therefore, the EMSD can, in principle, effectively achieve suppression of single and multiple vibration modes.

References

1.
Efren
,
D.-J.
,
Rocco
,
R.
,
Gómez-García
,
M.-J.
, and
Corral-abad
,
E.
,
2019
, “
Review of Passive Electromagnetic Devices for Vibration
,”
Shock Vib.
,
2019
,
Article No. 1250707
, pp.
16
. 10.1155/2019/1250707
2.
Yunhe
,
Y.
,
Nagi
,
G. N.
, and
Rao
,
V. D.
,
2001
, “
A Literature Review of Automotive Vehicle Engine Mounting Systems
,”
Shock Vib.
,
36
(
1
), pp.
123
142
.
3.
Nakamoto
,
E.
,
Chen
,
Q.-M.
,
Takeuchi
,
H.
, and
Brauer
,
J. R.
,
1997
, “
Electromagnetic and Structural Coupled Finite Element Analysis of Active Control in an Anti-Vibration Device
,”
IEEE Trans. Magn.
,
33
(
2
), pp.
1666
1669
. 10.1109/20.582591
4.
Mizuno
,
T.
,
Toumiya
,
T.
, and
Takasaki
,
M.
,
2002
, “
Vibration Isolation System Using Negative Stiffness
,”
JSME Int. J. Ser. C
,
46
(
3
), pp.
807
812
. 10.1299/jsmec.46.807
5.
Fleming
,
A. J.
,
Behrens
,
S.
, and
Moheimani
,
S. O. R.
,
2003
, “
Active LQR and H2 Shunt Control of Electromagnetic Transducers
,”
42nd IEEE International Conference on Decision and Control
, Vol.
3
, pp.
2294
2299
,
IEEE Cat. No. 03CH37475
.
6.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Reza Moheimani
,
S.
,
2003
, “
Electromagnetic Shunt Damping
,”
Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003)
,
Kobe, Japan
,
July 20–24
, pp.
1145
1150
.
7.
Fleming
,
A. J.
,
2004
, “
Synthesis and Implementation of Sensor-Less Shunt Controllers for Piezoelectric and Electromagnetic Vibration Control
,”
PhD thesis
,
The University of Newcastle Callaghan
,
Callaghan, NSW
.
8.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2005
, “
Passive Vibration Control Via Electromagnetic Shunt Damping
,”
IEEE/ASME Trans. Mechatron.
,
10
(
1
), pp.
118
122
. 10.1109/TMECH.2004.835341
9.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2006
, “
Inertial Vibration Control Using a Shunted Electromagnetic Transducer
,”
IEEE/ASME Trans. Mechatron.
,
11
(
1
), pp.
84
92
. 10.1109/TMECH.2005.863364
10.
Marneffe
,
B. D.
,
2007
, “
Active and Passive Vibration Isolation and Damping Via Shunted Transducers
,” No.
12
,
Universite Libre de Bruxelles
.
11.
Kim
,
Y.-B.
,
Hwang
,
W.-G.
,
Kee
,
C.-D.
, and
Yi
,
H.-B.
,
2001
, “
Active Vibration Control of a Suspension System Using an Electromagnetic Damper
,”
Proc. Inst. Mech. Eng. Part D: J. Autom. Eng.
,
215
(
8
), pp.
865
873
. 10.1243/0954407011528446
12.
Gysen
,
B. L. J.
,
Paulides
,
J. J. H.
,
Janssen
,
J. L. G.
, and
Lomonova
,
E. A.
,
2010
, “
Active Electromagnetic Suspension System for Improved Vehicle Dynamics
,”
IEEE Trans. Veh. Technol.
,
59
(
3
), pp.
1156
1163
. 10.1109/TVT.2009.2038706
13.
van der Sande
,
T. P. J.
,
Gysen
,
B. L. J.
,
Besselink
,
I. J. M.
,
Paulides
,
J. J. H.
,
Lomonova
,
E. A.
, and
Nijmeijer
,
H.
,
2013
, “
Robust Control of an Electromagnetic Active Suspension System: Simulations and Measurements
,”
Mechatronics
,
23
(
2
), pp.
204
212
. 10.1016/j.mechatronics.2012.07.002
14.
Palomera-Arias
,
R.
,
2005
, “
Passive Electromagnetic Damping Device for Motion Control of Building Structures
,”
Doctor of philosophy in architecture
,
Building Technology
.
15.
Palomera-Arias
,
R.
,
Connor
,
J. J.
, and
Ochsendorf
,
J. A.
,
2008
, “
Feasibility Study of Passive Electromagnetic Damping Systems
,”
J. Struct. Eng.
,
134
(
January
), pp.
164
170
. 10.1061/(ASCE)0733-9445(2008)134:1(164)
16.
Nakamura
,
Y.
,
Fukukita
,
A.
,
Tamura
,
K.
,
Yamazaki
,
I.
,
Matsuoka
,
T.
,
Hiramoto
,
K.
, and
Sunakoda
,
K.
,
2013
, “
Seismic Response Control Using Electromagnetic Inertial Mass Dampers
,”
Earthquake Eng. Struct. Dyn.
,
43
(
4
), pp.
507
527
. 10.1002/eqe.2355
17.
Sodano
,
H. A.
,
Bae
,
J.-S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
,
2006
, “
Improved Concept and Model of Eddy Current Damper
,”
ASME J. Vib. Acoust.
,
128
(
3
), p.
294
302
. 10.1115/1.2172256
18.
Inoue
,
T.
,
Ishida
,
Y.
, and
Sumi
,
M.
,
2008
, “
Vibration Suppression Using Electromagnetic Resonant Shunt Damper
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041003
. 10.1115/1.2889916
19.
Zhu
,
S.
,
Shen
,
W.
, and
Qian
,
X.
,
2013
, “
Dynamic Analogy Between an Electromagnetic Shunt Damper and a Tuned Mass Damper
,”
Smart Mater. Struct.
,
22
(
11
), p.
115018
. 10.1088/0964-1726/22/11/115018
20.
Cheng
,
T.-H.
, and
Oh
,
I.-K.
,
2009
, “
Vibration Suppression of Flexible Beam Using Electromagnetic Shunt Damper
,”
IEEE Trans. Magn.
,
45
(
6
), pp.
2758
2761
. 10.1109/TMAG.2009.2020549
21.
Niu
,
H.
,
Zhang
,
X.
,
Xie
,
S.
, and
Wang
,
P.
,
2009
, “
A New Electromagnetic Shunt Damping Treatment and Vibration Control of Beam Structures
,”
Smart Mater. Struct.
,
18
(
4
), p.
045009
. 10.1088/0964-1726/18/4/045009
22.
Yan
,
B.
,
Zhang
,
X.
, and
Niu
,
H.
,
2012
, “
Vibration Isolation of a Beam Via Negative Resistance Electromagnetic Shunt Dampers
,”
J. Intell. Mater. Syst. Struct.
,
23
(
6
), pp.
665
673
. 10.1177/1045389X12437889
23.
Yan
,
B.
,
Zhang
,
X.
,
Luo
,
Y.
,
Zhang
,
Z.
,
Xie
,
S.
, and
Zhang
,
Y.
,
2014
, “
Negative Impedance Shunted Electromagnetic Absorber for Broadband Absorbing: Experimental Investigation
,”
Smart Mater. Struct.
,
23
(
12
), p.
125044
. 10.1088/0964-1726/23/12/125044
24.
McDaid
,
A. J.
, and
Mace
,
B. R.
,
2013
, “
A Self-Tuning Electromagnetic Vibration Absorber With Adaptive Shunt Electronics
,”
Smart Mater. Struct.
,
22
(
22
), p.
105013
. 10.1088/0964-1726/22/10/105013
25.
Zuo
,
L.
, and
Cui
,
W.
,
2013
, “
Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051018
. 10.1115/1.4024095
26.
Elliott
,
S. J.
, and
Zilletti
,
M.
,
2014
, “
Scaling of Electromagnetic Transducers for Shunt Damping and Energy Harvesting
,”
J. Sound Vib.
,
333
(
8
), pp.
2185
2195
. 10.1016/j.jsv.2013.11.036
27.
Niederberger
,
D.
,
Fleming
,
A.
,
Moheimani
,
S. O. R.
, and
Morari
,
M.
,
2004
, “
Adaptive Multi-Mode Resonant Piezoelectric Shunt Damping
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1025
1035
. 10.1088/0964-1726/13/5/007
28.
Cheng
,
T.-H.
, and
Oh
,
I.-K.
,
2009
, “
A Current-Flowing Electromagnetic Shunt Damper for Multi-Mode Vibration Control of Cantilever Beams
,”
Smart Mater. Struct.
,
18
(
9
), p.
095036
. 10.1088/0964-1726/18/9/095036
29.
Yan
,
B.
,
Luo
,
Y.
, and
Zhang
,
X.
,
2014
, “
Structural Multimode Vibration Absorbing With Electromagnetic Shunt Damping
,”
J. Vib. Control.
,
22
(
6
), pp.
1604
1617
.
30.
Ao
,
W. K.
, and
Reynolds
,
P.
,
2015
, “
Analysis of H∞ and H2 Optimal Design Scheme for an Electromagnetic Damper With Shunt Resonant Circuit
,”
Proceedings of IMAC-XXXIII Congress
,
Orlando, FL
,
Feb. 2–5
, pp.
1
10
.
31.
Ao
,
W. K.
, and
Chang
,
K. C.
,
2010
, “
Analytical and Experimental Studies on Seismic Behavior of Structures With Building Mass Dampers
,”
MS thesis
, Vol.
1
,
National Taiwan University
,
Taipei
.
32.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Publications Inc.
,
New York
.
33.
Cheung
,
Y.
, and
Wong
,
W.
,
2011
, “
H2 Optimization of a Non-Traditional Dynamic Vibration Absorber for Vibration Control of Structures Under Random Force Excitation
,”
J. Sound Vib.
,
330
(
6
), pp.
1039
1044
. 10.1016/j.jsv.2010.10.031
34.
Wong
,
W. O.
, and
Cheung
,
Y. L.
,
2008
, “
Optimal Design of a Damped Dynamic Vibration Absorber for Vibration Control of Structure Excited by Ground Motion
,”
Eng. Struct.
,
30
(
30
), pp.
282
286
. 10.1016/j.engstruct.2007.03.007
35.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2007
,
Table of Integrals, Series, and Products
, 7th ed.,
Academic Press
,
New York
.
36.
Ao
,
W. K.
,
2018
, “
Electromagnetic Damping for Control of Vibrations in Civil Structures
,”
PhD thesis
,
The University of Exeter
,
Exeter
.
37.
Debnath
,
N.
,
Deb
,
S.
, and
Dutta
,
A.
,
2015
, “
Multi-Modal Vibration Control of Truss Bridges With Tuned Mass Dampers Under General Loading
,”
J. Vib. Control
,
22
(
20
), pp.
4121
4140
. 10.1177/1077546315571172
You do not currently have access to this content.