The nonlinear energy sink (NES) is usually coupled with a linear oscillator (LO) to rapidly transfer and immediately dissipate a significant portion of the initial shock energy induced into the LO. This passive energy transfer and dissipation are usually achieved through strong resonance captures between the NES and the LO responses. Here, a nontraditional set of nonlinear coupling restoring forces is numerically investigated to introduce enhanced versions of the NESs. In this new set of nonlinear coupling restoring forces, one has a varying nonlinear stiffness that includes both of hardening and softening stiffness components during the oscillation, which appear in closed-loops under the effect of the damping. The obtained results by the numerical simulation have shown that employing this kind of the nonlinear restoring forces for passive targeted energy transfer (TET) is promising for shock mitigation.

References

1.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II
,
Springer Verlag
,
Berlin
.
2.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
3.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Physica D
,
204
(
1–2
), pp.
41
69
.
4.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(3–5), pp.
522
551
.
5.
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Study of Non-Linear Energy Pumping Occurring at a Single Fast Frequency
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
891
899
.
6.
Vakakis
,
A. F.
,
2003
, “
Shock Isolation Through the Use of Nonlinear Energy Sinks
,”
J. Vib. Control
,
9
(1–2), pp.
79
93
.
7.
Wierschem
,
N.
,
Luo
,
J.
,
Quinn
,
D. D.
,
Hubbard
,
S.
,
AL-Shudeifat
,
M. A.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
, Jr.
,
2012
, “
Passive Damping Enhancement of a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment
,”
J. Sound Vib.
,
331
(
25
), pp.
5393
5407
.
8.
Sapsis
,
T. P.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011016
.
9.
AL-Shudeifat
,
M. A.
,
2015
, “
Asymmetric Magnet-Based Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
014502
.
10.
Vakakis
,
A. F.
,
AL-Shudeifat
,
M. A.
, and
Hasan
,
M. A.
,
2014
, “
Interactions of Propagating Waves in a One-Dimensional Chain of Linear Oscillators With a Strongly Nonlinear Local Attachment
,”
Meccanica
,
49
(
10
), pp.
2375
2397
.
11.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
.
12.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-of-Freedom System With Nonlinear Inertial Coupling
,”
Chaos
,
22
(
1
), p.
013118
.
13.
AL-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
.
14.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2013
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
.
15.
Sigalov
,
G.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011007
.
16.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.
17.
Karayannis
,
I.
,
Vakakis
,
A. F.
, and
Georgiades
,
F.
,
2008
, “
Vibro-Impact Attachments as Shock Absorbers
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
10
), pp.
1899
1908
.
18.
Nucera
,
F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2010
, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame—I: Computational Results
,”
J. Sound Vib.
,
329
(
15
), pp.
2973
2994
.
19.
Lee
,
Y. S.
,
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2009
, “
Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments
,”
Physica D
,
238
(
18
), pp.
1868
1896
.
20.
Georgiadis
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2005
, “
Shock Isolation Through Passive Energy Pumping Caused by Non-Smooth Nonlinearities
,”
Int. J. Bifurcation Chaos
,
15
(
6
), pp.
1989
2001
.
21.
AL-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
, Jr.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Nonlinear Energy Sink for Shock Mitigation
,”
Int. J. Non-Linear Mech.
,
52
, pp.
96
109
.
22.
Luo
,
J.
,
Wierschem
,
N. E.
,
Hubbard
,
S. A.
,
Fahnestock
,
L. A.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Spencer
,
B. F.
, Jr.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Large-Scale Experimental Evaluation and Numerical Simulation of a System of Nonlinear Energy Sinks for Seismic Mitigation
,”
Eng. Struct.
,
77
, pp.
34
48
.
23.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Design, Simulation, and Large-Scale Testing of an Innovative Vibration Mitigation Device Employing Essentially Nonlinear Elastomeric Springs
,”
Earthquake Eng. Struct. Dyn.
,
43
(
12
), pp.
1829
1851
.
24.
Quinn
,
D. D.
,
Wierschem
,
N.
,
Hubbard
,
S.
,
AL-Shudeifat
,
M. A.
,
Ott
,
R. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Equivalent Modal Damping, Stiffening and Energy Exchanges in Multi-Degree-of-Freedom Systems With Strongly Nonlinear Attachments
,”
J. Multi-Body Dyn.
,
226
(
2
), pp.
122
146
.
25.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2015
, “
Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031008
.
26.
Li
,
T.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2016
, “
Dynamics of Cubic and Vibro-Impact Nonlinear Energy Sink: Analytical, Numerical, and Experimental Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031010
.
27.
AL-Shudeifat
,
M. A.
,
2014
, “
Amplitudes Decay in Different Kinds of Nonlinear Oscillators
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031012
.
You do not currently have access to this content.