Free-falling microstructure profiler (FFMP) is the most effective platform for measuring ocean microstructure turbulence. Vibration is the key factor of influencing the accuracy of the measurement of the shear sensor mounted on the leading end of the FFMP. In the present work, vibration behavior of an FFMP called FFMP1000 was studied through fluid–structure interaction (FSI) simulations and field trials. Vibration characteristics and mechanism of the FFMP1000 were also discussed. Results showed that motion of the FFMP was like a compound pendulum oscillation, and was caused by vortex shedding at the trailing end of the FFMP. Empirical formulas used to predict the oscillation of the FFMP were deduced based on the characteristics of motion behavior and confirmed through sea trials. The present achievement provides scientific guidance for designing optimal hydrodynamic hull shape of the FFMP. It is also useful to estimate the low end detection limit of the FFMP and to modify the turbulence kinetic energy dissipation rate during ocean observations.

References

1.
Munk
,
W. H.
,
1981
, “
Internal Waves and Small Scale Processes
,”
Evolution of Physical Oceanography, Scientific Surveys in Honor of Henry Stommel
, B. Warren and C. Wunsch, eds.,
MIT Press
,
Cambridge, MA
, pp.
264
291
.
2.
Thorpe
,
S. A.
,
2004
, “
Recent Developments in the Study of Ocean Turbulence
,”
Annu. Rev. Earth Planet. Sci.
,
32
(
1
), pp.
91
109
.
3.
Young
,
R.
,
Rhines
,
P. B.
, and
Garrett
,
C. J. R.
,
1982
, “
Shear-Flow Dispersion, Internal Waves and Horizontal Mixing in the Ocean
,”
J. Phys. Oceanogr.
,
12
(
6
), pp.
515
527
.
4.
Carter
,
G. D.
, and
Imberger
,
J.
,
1986
, “
Vertical Rising Microstructure Profiler
,”
J. Atmos. Oceanic Technol.
,
3
(
3
), pp.
462
471
.
5.
Moum
,
J. N.
, and
Tippeth
,
T. P.
,
2009
, “
Do Observation Adequately Resolve the Natural Variability of Oceanic Turbulence?
,”
J. Mar. Syst.
,
77
(
4
), pp.
409
417
.
6.
Lueck
,
R. G.
,
Wolk
,
F.
, and
Yamaxaki
,
H.
,
2002
, “
Oceanic Velocity Microstructure Measurements in the 20th Century
,”
J. Oceanogr.
,
58
(
1
), pp.
153
174
.
7.
Burchard
,
H.
,
Craig
,
P. D.
,
Gemmrich
,
J. R.
,
Haren
,
H. V.
,
Mathieu
,
P. P.
,
Markus Meier
,
H. E.
,
Nimmo Smith
,
W. A. M.
,
Prandke
,
H.
,
Rippeth
,
T. P.
,
Skyllingstad
,
E. D.
,
Smyth
,
W. D.
,
Welsh
,
D. J. S.
, and
Wijesekera
,
H. W.
,
2008
, “
Observational and Numerical Modeling Method for Quantifying Coastal Ocean Turbulence and Mixing
,”
Prog. Oceanogr.
,
76
(
4
), pp.
399
422
.
8.
Gregg
,
M. C.
,
Nodland
,
W. E.
,
Aagaard
,
E. E.
, and
Hirt
,
D. H.
,
1982
, “
Use of a Fiber-Optic Cable With a Free-Fall Microstructure Profiler
,”
Oceans'82
, Washington, DC, Sept. 20–22, IEEE, New York, pp.
260
265
.
9.
Miller
,
J. B.
,
Gregg
,
M. C.
,
Miller
,
V. W.
, and
Welsh
,
G. L.
,
1989
, “
Vibration of Tethered Microstructure Profilers
,”
J. Atmos. Oceanic Technol.
,
6
(
6
), pp.
980
984
.
10.
Oakey
,
N. S.
,
1988
, “
EPSONDE: An Instrument to Measure Turbulence in the Deep Ocean
,”
IEEE J. Oceanic Eng.
,
13
(
3
), pp.
124
128
.
11.
Prandke
,
H.
, and
Stips
,
A.
,
1998
, “
Microstructure Profiler to Study Mixing and Turbulent Transport Processes
,”
Oceans'98
, Nice, France, Sept. 28–Oct. 1, pp.
179
183
.
12.
Jiang
,
X.
,
Liu
,
Y.
,
Song
,
S.
, and
Wang
,
Y.
,
2015
, “
Structure Optimization for Main Body of Vertical Microstructure Profiler
,”
China Mech. Eng.
,
26
(
1
), pp.
97
101
.
13.
Osborn
,
T. R.
,
1974
, “
Vertical Profiling of Velocity Microstructure
,”
J. Phys. Oceanogr.
,
4
(
1
), pp.
109
115
.
14.
Moum
,
J. N.
, and
Lueck
,
R. G.
,
1985
, “
Causes and Implications of Noise in Oceanic Dissipation Measurements
,”
Deep-Sea Res., Part A
,
32
(
4
), pp.
379
390
.
15.
Moum
,
J. N.
,
Gregg
,
M. C.
,
Lien
,
R. C.
, and
Carr
,
M. E.
,
1995
, “
Comparison of Turbulence Kinetic Energy Dissipation Rate Estimates From Two Ocean Microstructure Profilers
,”
J. Atmos. Oceanic Technol.
,
12
(
2
), pp.
346
366
.
16.
Thwaites
,
F.
, and
Polzin
,
K.
,
2003
, “
Structural Design Considerations of a Profiling Free Vehicle Used to Measure Ocean Turbulence
,”
IEEE/OES
Seventh Working Conference on Current Measurement Technology
, San Diego, CA, Mar. 13–15, pp.
231
236
.
17.
Dewey
,
R. K.
,
Crawford
,
W. R.
,
Gargett
,
A. E.
, and
Oakey
,
N. S.
,
1987
, “
A Microstructure Instrument for Profiling Oceanic Turbulence in Coastal Bottom Boundary Layers
,”
J. Atmos. Oceanic Technol.
,
4
(
2
), pp.
288
297
.
18.
Doubell
,
M. J.
,
Yamazaki
,
H.
,
Li
,
H.
, and
Kokubu
,
Y.
,
2009
, “
An Advanced Laser-Based Fluorescence Microstructure Profiler (TurboMAP-L) for Measuring Bio-Physical Coupling in Aquatic Systems
,”
J. Plankton Res.
,
31
(
12
), pp.
1441
1452
.
19.
Schmitt
,
R. W.
,
Toole
,
J. M.
,
Koehler
,
R. L.
,
Mellinger
,
E. C.
, and
Doherty
,
K. W.
,
1988
, “
The Development of a Fine- and Microstructure Profiler
,”
J. Atmos. Oceanic Technol.
,
5
(
4
), pp.
484
500
.
20.
Lu
,
Y.
,
Liang
,
C.
,
Manzano-Ruiz
,
J. J.
,
Janardhanan
,
K.
, and
Perng
,
Y. Y.
,
2014
, “
FSI Analysis of Flow-Induced Vibration in Subsea Jumper Subject to Downstream Slug and Ocean Current
,”
ASME
Paper No. OMAE2014-24120.
21.
Kara
,
M. C.
, and
Stoesser
,
T.
,
2014
, “
A Strong FSI Coupling Scheme to Investigate the Onset of Resonance of Cylinders in Tandem Arrangement
,”
ASME
Paper No. OMAE2014-23972.
22.
Huang
,
X. C.
,
Zhang
,
Z. Y.
,
Zhang
,
Z. H.
, and
Hua
,
H. X.
,
2012
, “
Multi-Channel Active Vibration Isolation for the Control of Underwater Sound Radiation From a Stiffened Cylindrical Structure: A Numerical Study
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011012
.
23.
Zanganeh
,
H.
, and
Srinil
,
N.
,
2014
, “
Characterization of Variable Hydrodynamic Coefficients and Maximum Responses in Two-Dimensional Vortex-Induced Vibrations With Dual Resonances
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
051010
.
24.
Nguyen
,
V. T.
,
2010
, “
An Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Method for Simulations of Flows Over Variable Geometries
,”
J. Fluids Struct.
,
26
(
2
), pp.
312
329
.
25.
Liu
,
Y.
,
Lan
,
S.
,
Wang
,
Y.
,
Song
,
S.
,
Wu
,
Z.
, and
Zhang
,
H.
,
2012
, “
A Numerical Method for Calculating the Flow-Induced Vibration of the Microstructure Profiler
,”
Oceans'12
, Hampton Roads, VA, Oct. 14–19, MTS/IEEE, New York.
26.
Liu
,
Z.
,
Liu
,
Y.
, and
Lu
,
J.
,
2012
, “
Simulation of Fluid–Structure Interaction for an Elastic Cylinder in an Axial Flow
,”
Advances in Fluid Mechanics IX
(WIT Transactions on Engineering Sciences, Vol.
74
),
WIT Press
,
Ashurst, Southampton
, UK, pp.
151
162
.
27.
Shinde
,
V.
,
Marcel
,
T.
,
Hoarau
,
Y.
,
Deloze
,
T.
,
Harran
,
G.
,
Baj
,
F.
,
Cardolaccia
,
J.
,
Magnaud
,
J. P.
,
Longatte
,
E.
, and
Braza
,
M.
,
2014
, “
Numerical Simulation of the Fluid–Structure Interaction in a Tube Array Under Cross Flow at Moderate and High Reynolds Number
,”
J. Fluid Struct.
,
47
, pp.
99
113
.
28.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2016
, “
On the Capability of Structural–Acoustical Fluid–Structure Interaction Simulations to Predict Natural Frequencies of Rotating Disklike Structures Submerged in a Heavy Fluid
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
034502
.
29.
Wang
,
S.
,
Xiao
,
X.
,
Wang
,
Y.
,
Wan
,
Z.
, and
Chen
,
B.
,
2012
, “
Denoising Method for Shear Probe Signal Based on Wavelet Thresholding
,”
Trans. Tianjin Univ.
,
18
(
2
), pp.
135
140
.
30.
Roget
,
E.
,
Lozovatsky
,
I.
,
Sanchez
,
X.
, and
Figueroa
,
M.
,
2006
, “
Microstructure Measurements in Natural Waters: Methodology and Applications
,”
Prog. Oceanogr.
,
70
(
2–4
), pp.
126
148
.
31.
Lan
,
S.
,
2012
, “
The Flow-Induced Vibration Analysis of Microstructure Turbulence Profiler
,” Master's thesis, Tianjin University, Tianjin, China, pp.
33
35
(in Chinese).
32.
Zhang
,
Z.
,
Cui
,
G.
, and
Xu
,
C.
,
2005
,
Theory and Modeling of Turbulence
,
Tsinghua University Press
,
Beijing, China
, pp.
233
237
(in Chinese).
33.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations. I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
34.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabo
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluid
,
3
(
7
), pp.
1760
1765
.
35.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluid
,
4
(
3
), pp.
633
635
.
36.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2010
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
World Publishing Company Beijing Branch
,
Beijing, China
, pp.
75
77
.
37.
Wilson
,
J. F.
,
2003
,
Dynamics of Offshore Structures
,
Wiley
,
Hoboken, NJ
, pp. 23–26.
You do not currently have access to this content.