To study the size and surface effects on characteristics of in-plane shear waves in magnetically affected nanofilms, a novel model is developed. Using nonlocal and surface continuum theories, the governing equations are established and appropriate boundary conditions are imposed at the bottom and top surfaces of the nanofilm. The dispersion relations associated with symmetric and asymmetric modes are obtained. The effects of the surface energy, small-scale parameter, nanofilm's thickness, and magnetic field strength on dispersion curves are addressed. The limitations of the classical theory of elasticity are discussed. The obtained results show that the phase velocity of the propagated in-plane shear waves magnifies by an increase of the thickness as well as magnetic field strength. However, the phase velocity commonly decreases as the effect of the surface energy or nonlocality increases. Such a fact is more obvious for higher modes of vibration. Generally, the cutoff frequency reaches a lower value as the nanofilm's thickness reduces or the small-scale parameter increases. Additionally, variation of the magnetic field strength has fairly no influence on the cutoff frequency.

References

1.
Mitsuishi
,
M.
,
Zhao
,
F.
,
Kim
,
Y.
,
Watanabe
,
A.
, and
Miyashita
,
T.
,
2008
, “
Preparation of Ultrathin Silsesquioxane Nanofilms Via Polymer Langmuir-Blodgett Films
,”
Chem. Mater.
,
20
(
13
), pp.
4310
4316
.
2.
Lee
,
D. K.
,
Kim
,
Y. H.
,
Kim
,
C. W.
,
Cha
,
H. G.
, and
Kang
,
Y. S.
,
2007
, “
Vast Magnetic Monolayer Film With Surfactant-Stabilized Fe3O4 Nanoparticles Using Langmuir-Blodgett Technique
,”
J. Phys. Chem. B
,
111
(
31
), pp.
9288
9293
.
3.
Chang
,
C. Y.
,
Chou
,
C. T.
,
Lee
,
Y. J.
,
Chen
,
M. J.
, and
Tsai
,
F. Y.
,
2009
, “
Thin-Film Encapsulation of Polymer-Based Bulk-Heterojunction Photovoltaic Cells by Atomic Layer Deposition
,”
Org. Electron.
,
10
(
7
), pp.
1300
1306
.
4.
Ge
,
C.
,
Wang
,
A.
, and
Yin
,
H.
,
2012
, “
Encapsulation of TiO2 Particles With Polystyrene and Polymethyl Acrylic Acid and the Pigmentary Performances
,”
J. Ind. Eng. Chem.
,
18
(
4
), pp.
1384
1390
.
5.
Zhou
,
D.
,
Jian
,
G.
,
Zheng
,
Y.
, and
Shi
,
F.
,
2011
, “
Multiferroic Nanofilm With Bilayer of Pb(Zr0.52Ti0.48)O3 and CoFe2O4 Prepared by Electrophoretic Deposition
,”
Advances and Applications in Electroceramics
, Vol.
226
,
K. M.
Nair
,
Q.
Jia
, and
S.
Priya
, eds., Wiley, Hoboken, NJ, pp.
241
248
.
6.
Chandrasekharan
,
N.
, and
Kamat
,
P. V.
,
2001
, “
Assembling Gold Nanoparticles as Nanostructured Films Using an Electrophoretic Approach
,”
Nano Lett.
,
1
(
2
), pp.
67
70
.
7.
Ai
,
H.
,
Meng
,
H.
,
Ichinose
,
I.
,
Jones
,
S. A.
,
Mills
,
D. K.
,
Lvov
,
Y. M.
, and
Qiao
,
X.
,
2003
, “
Biocompatibility of Layer-By-Layer Self-Assembled Nanofilm on Silicone Rubber for Neurons
,”
J. Neurosci. Methods
,
128
(
1–2
), pp.
1
8
.
8.
Ma
,
R.
,
Sasaki
,
T.
, and
Bando
,
Y.
,
2004
, “
Layer-By-Layer Assembled Multilayer Films of Titanate Nanotubes, Ag-or Au-Loaded Nanotubes, and Nanotubes/Nanosheets With Polycations
,”
J. Am. Chem. Soc.
,
126
(
33
), pp.
10382
10388
.
9.
Wittmer
,
C. R.
,
Phelps
,
J. A.
,
Lepus
,
C. M.
,
Saltzman
,
W. M.
,
Harding
,
M. J.
, and
Van Tassel
,
P. R.
,
2008
, “
Multilayer Nanofilms as Substrates for Hepatocellular Applications
,”
Biomaterials
,
29
(
30
), pp.
4082
4090
.
10.
Sinibaldi
,
E.
,
Pensabene
,
V.
,
Taccola
,
S.
,
Palagi
,
S.
,
Menciassi
,
A.
,
Dario
,
P.
, and
Mattoli
,
V.
,
2010
, “
Magnetic Nanofilms for Biomedical Applications
,”
ASME J. Nanotechnol. Eng. Med.
,
1
(
2
), p.
021008
.
11.
Domansky
,
K.
,
Liu
,
J.
,
Wang
,
L. Q.
,
Engelhard
,
M. H.
, and
Baskaran
,
S.
,
2001
, “
Chemical Sensors Based on Dielectric Response of Functionalized Mesoporous Silica Films
,”
J. Mater. Res.
,
16
(
10
), pp.
2810
2816
.
12.
Liu
,
X.
,
Lu
,
X.
,
Chuai
,
R.
,
Shi
,
C.
, and
Suo
,
C.
,
2009
, “
Polysilicon Nanofilm Pressure Sensor
,”
Sens. Actuators A
,
154
(
1
), pp.
42
45
.
13.
Kumar
,
V.
,
Bergman
,
A. A.
,
Gorokhovsky
,
A. A.
, and
Zaitsev
,
A. M.
,
2011
, “
Formation of Carbon Nanofilms on Diamond for All-Carbon Based Temperature and Chemical Sensor Application
,”
Carbon
,
49
(
4
), pp.
1385
1394
.
14.
Tsai
,
C. Y.
,
Tam
,
S. Y.
,
Lu
,
Y.
, and
Brinker
,
C. J.
,
2000
, “
Dual-Layer Asymmetric Microporous Silica Membranes
,”
J. Membr. Sci.
,
169
(
2
), pp.
255
268
.
15.
McKenzie
,
K. J.
,
Marken
,
F.
,
Hyde
,
M.
, and
Compton
,
R. G.
,
2002
, “
Nanoporous Iron Oxide Membranes: Layer-by-Layer Deposition and Electrochemical Characterisation of Processes Within Nanopores
,”
New J. Chem.
,
26
(
5
), pp.
625
629
.
16.
Bera
,
M.
, and
Ray
,
M.
,
2012
, “
Role of Waveguide Resonance in Coupled Plasmonic Structures Using Bimetallic Nanofilms
,”
Opt. Eng.
,
51
(
10
), p.
103801
.
17.
Szendro
,
I.
,
Erdélyi
,
K.
,
Puskas
,
Z.
,
Fabian
,
M.
,
Adanyi
,
N.
, and
Somogyi
,
K.
,
2012
, “
Development and Experiments With Conductive Oxide Nanofilm Coated Planar Waveguide Sensors
,”
Nanopages
,
7
(
1
), pp.
17
24
.
18.
Yang
,
P.
,
Wirnsberger
,
G.
,
Huang
,
H. C.
,
Cordero
,
S. R.
,
McGehee
,
M. D.
,
Scott
,
B.
,
Deng
,
T.
,
Whitesides
,
G. M.
,
Chmelka
,
B. F.
,
Buratto
,
S. K.
, and
Stucky
,
G. D.
,
2000
, “
Mirrorless Lasing From Mesostructured Waveguides Patterned by Soft Lithography
,”
Science
,
287
(
5452
), pp.
465
467
.
19.
Favazza
,
C.
,
Kalyanaraman
,
R.
, and
Sureshkumar
,
R.
,
2006
, “
Robust Nanopatterning by Laser-Induced Dewetting of Metal Nanofilms
,”
Nanotechnology
,
17
(
16
), p.
4229
.
20.
Kulagin
,
V. V.
,
Cherepenin
,
V. A.
,
Hur
,
M. S.
, and
Suk
,
H.
,
2007
, “
Theoretical Investigation of Controlled Generation of a Dense Attosecond Relativistic Electron Bunch From the Interaction of an Ultrashort Laser Pulse With a Nanofilm
,”
Phys. Rev. Lett.
,
99
(
12
), p.
124801
.
21.
Gleskova
,
H.
, and
Wagner
,
S.
,
2001
, “
Electron Mobility in Amorphous Silicon Thin-Film Transistors Under Compressive Strain
,”
Appl. Phys. Lett.
,
79
(
20
), pp.
3347
3349
.
22.
Guisbiers
,
G.
, and
Buchaillot
,
L.
,
2008
, “
Thermo-Opto-Mechanical Properties of AlN Nanostructures: A Promising Material for NEMS Applications
,”
J. Phys. D
,
41
(
17
), p.
172001
.
23.
Sinha
,
N.
,
Wabiszewski
,
G. E.
,
Mahameed
,
R.
,
Felmetsger
,
V. V.
,
Tanner
,
S. M.
,
Carpick
,
R. W.
, and
Piazza
,
G.
,
2009
, “
Ultra Thin AlN Piezoelectric Nano-Actuators
,” International Solid-State Sensors, Actuators and Microsystems Conference, (
TRANSDUCERS 2009
), Denver, CO, June 21–25, pp.
469
472
.
24.
Guo
,
J. G.
, and
Zhao
,
Y. P.
,
2005
, “
The Size-Dependent Elastic Properties of Nanofilms With Surface Effects
,”
J. Appl. Phys.
,
98
(
7
), p.
074306
.
25.
Fedorchenko
,
A. I.
,
Wang
,
A. B.
, and
Cheng
,
H. H.
,
2009
, “
Thickness Dependence of Nanofilm Elastic Modulus
,”
Appl. Phys. Lett.
,
94
(
15
), p.
152111
.
26.
Cao
,
G.
, and
Chen
,
X.
,
2007
, “
Energy Analysis of Size-Dependent Elastic Properties of ZnO Nanofilms Using Atomistic Simulations
,”
Phys. Rev. B
,
76
(
16
), p.
165407
.
27.
Cuenot
,
S.
,
Frétigny
,
C.
,
Demoustier-Champagne
,
S.
, and
Nysten
,
B.
,
2004
, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,”
Phys. Rev. B
,
69
(
16
), p.
165410
.
28.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1976
, “
Effect of Surface Stress on Wave Propagation in Solids
,”
J. Appl. Phys.
,
47
(
10
), pp.
4414
4421
.
29.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
30.
Lu
,
P.
,
He
,
L. H.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2006
, “
Thin Plate Theory Including Surface Effects
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4631
4647
.
31.
Lim
,
C. W.
, and
He
,
L. H.
,
2004
, “
Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness
,”
Int. J. Mech. Sci.
,
46
(
11
), pp.
1715
1726
.
32.
Huang
,
D. W.
,
2008
, “
Size-Dependent Response of Ultra-Thin Films With Surface Effects
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
568
579
.
33.
Wang
,
K. F.
, and
Wang
,
B. L.
,
2011
, “
Vibration of Nanoscale Plates With Surface Energy Via Nonlocal Elasticity
,”
Phys. E
,
44
(
2
), pp.
448
453
.
34.
Assadi
,
A.
,
Farshi
,
B.
, and
Alinia-Ziazi
,
A.
,
2010
, “
Size Dependent Dynamic Analysis of Nanoplates
,”
J. Appl. Phys.
,
107
(
12
), p.
124310
.
35.
Zhang
,
J.
, and
Wang
,
C.
,
2012
, “
Vibrating Piezoelectric Nanofilms as Sandwich Nanoplates
,”
J. Appl. Phys.
,
111
(
9
), p.
094303
.
36.
Sheng
,
H.
,
Li
,
H.
,
Lu
,
P.
, and
Xu
,
H.
,
2010
, “
Free Vibration Analysis for Micro-Structures Used in MEMS Considering Surface Effects
,”
J. Sound Vib.
,
329
(
2
), pp.
236
246
.
37.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
,
2012
, “
Study of Terahertz Wave Propagation Properties in Nanoplates With Surface and Small-Scale Effects
,”
Int. J. Mech. Sci.
,
64
(
1
), pp.
221
231
.
38.
Zhang
,
C.
,
Chenb
,
W.
, and
Zhang
,
Ch.
,
2012
, “
On Propagation of Anti-Plane Shear Waves in Piezoelectric Plates With Surface Effect
,”
Phys. Lett. A
,
376
(
45
), pp.
3281
3286
.
39.
Liu
,
H.
,
Liu
,
H.
, and
Yang
,
J. L.
,
2013
, “
Surface Effects on the Propagation of Shear Horizontal Waves in Thin Films With Nano-Scale Thickness
,”
Phys. E
,
49
, pp.
13
17
.
40.
Zhang
,
L. L.
,
Liu
,
J. X.
,
Fang
,
X. Q.
, and
Nie
,
G. Q.
,
2014
, “
Effects of Surface Piezoelectricity and Nonlocal Scale on Wave Propagation in Piezoelectric Nanoplates
,”
Eur. J. Mech.-A/Solids
,
46
, pp.
22
29
.
41.
Zhang
,
L. L.
,
Liu
,
J. X.
,
Fang
,
X. Q.
, and
Nie
,
G. Q.
,
2014
, “
Surface Effect on Size-Dependent Wave Propagation in Nanoplates Via Nonlocal Elasticity
,”
Philos. Mag.
,
94
(
18
), pp.
2009
2020
.
42.
Eringen
,
A. C.
, and
Edelen
,
D. G. B.
,
1972
, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
,
10
(
3
), pp.
233
248
.
43.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.
44.
Eringen
,
A. C.
,
2002
,
Nonlocal Continuum Field Theories
,
Springer
,
New York
.
45.
Kiani
,
K.
,
2014
, “
Longitudinally Varying Magnetic Field Influenced Transverse Vibration of Embedded Double-Walled Carbon Nanotubes
,”
Int. J. Mech. Sci.
,
87
, pp.
179
199
.
46.
Kiani
,
K.
,
2015
, “
Elastic Wave Propagation in Magnetically Affected Double-Walled Carbon Nanotubes
,”
Meccanica
,
50
(
4
), pp.
1003
1026
.
47.
Narendar
,
S.
,
Gupta
,
S. S.
, and
Gopalakrishnan
,
S.
,
2012
, “
Wave Propagation in Single-Walled Carbon Nanotube Under Longitudinal Magnetic Field Using Nonlocal Euler-Bernoulli Beam Theory
,”
Appl. Math. Modell.
,
36
(
9
), pp.
4529
4538
.
48.
Wang
,
X.
,
Shen
,
J. X.
,
Liu
,
Y.
,
Shen
,
G. G.
, and
Lu
,
G.
,
2012
, “
Rigorous Van der Waals Effect on Vibration Characteristics of Multi-Walled Carbon Nanotubes Under a Transverse Magnetic Field
,”
Appl. Math. Modell.
,
36
(
2
), pp.
648
656
.
49.
Wang
,
H.
,
Dong
,
K.
,
Men
,
F.
,
Yan
,
Y. J.
, and
Wang
,
X.
,
2010
, “
Influences of Longitudinal Magnetic Field on Wave Propagation in Carbon Nanotubes Embedded in Elastic Matrix
,”
Appl. Math. Modell.
,
34
(
4
), pp.
878
889
.
50.
Kiani
,
K.
,
2012
, “
Magneto-Elasto-Dynamic Analysis of an Elastically Confined Conducting Nanowire Due to an Axial Magnetic Shock
,”
Phys. Lett. A
,
376
(
20
), pp.
1679
1685
.
51.
Kiani
,
K.
,
2012
, “
Magneto-Thermo-Elastic Fields Caused by an Unsteady Longitudinal Magnetic Field in a Conducting Nanowire Accounting for Eddy-Current Loss
,”
Mater. Chem. Phys.
,
136
(
2–3
), pp.
589
598
.
52.
Kiani
,
K.
,
2014
, “
Forced Vibrations of a Current-Carrying Nanowire in a Longitudinal Magnetic Field Accounting for Both Surface Energy and Size Effects
,”
Phys. E
,
63
, pp.
27
35
.
53.
Kiani
,
K.
,
2015
, “
Vibrations and Instability of Pretensioned Current-Carrying Nanowires Acted Upon by a Suddenly Applied Three-Dimensional Magnetic Field
,”
Mater. Chem. Phys.
,
162
, pp.
531
541
.
54.
Kiani
,
K.
,
2014
, “
Free Vibration of Conducting Nanoplates Exposed to Unidirectional In-Plane Magnetic Fields Using Nonlocal Shear Deformable Plate Theories
,”
Phys. E
,
57
, pp.
179
192
.
55.
Ke
,
L. L.
,
Wang
,
Y. S.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2014
, “
Free Vibration of Size-Dependent Magneto-Electro-Elastic Nanoplates Based on the Nonlocal Theory
,”
Acta Mech. Sin.
,
30
(
4
), pp.
516
525
.
56.
Li
,
Y. S.
,
Cai
,
Z. Y.
, and
Shi
,
S. Y.
,
2014
, “
Buckling and Free Vibration of Magnetoelectroelastic Nanoplate Based on Nonlocal Theory
,”
Compos. Struct.
,
111
, pp.
522
529
.
57.
Allegri
,
G.
,
Fabrizio
,
S.
,
Rajib
,
C.
, and
Sondipon
,
A.
,
2013
, “
Wave Propagation in Periodically Supported Nanoribbons: A Nonlocal Elasticity Approach
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041017
.
58.
Shi
,
J. X.
,
Ni
,
Q. Q.
,
Lei
,
X. W.
, and
Natsuki
,
T.
,
2012
, “
Nonlocal Vibration of Embedded Double-Layer Graphene Nanoribbons in In-Phase and Anti-Phase Modes
,”
Phys. E
,
44
(
7–8
), pp.
1136
1141
.
59.
Kiani
,
K.
,
2015
, “
Characteristics of Shear Horizontal Waves in Magnetically Affected Ultra-Thin Films Accounting for Surface Effect
,”
Wave Motion
,
53
, pp.
20
27
.
60.
Duan
,
W. H.
,
Wang
,
C. M.
, and
Zhang
,
Y. Y.
,
2007
, “
Calibration of Nonlocal Scaling Effect Parameter for Free Vibration of Carbon Nanotubes by Molecular Dynamics
,”
J. Appl. Phys.
,
101
(
2
), p.
024305
.
61.
Wang
,
C. M.
,
Zhang
,
Z.
,
Challamel
,
N.
, and
Duan
,
W. H.
,
2013
, “
Calibration of Eringen's Small Length Scale Coefficient for Initially Stressed Vibrating Nonlocal Euler Beams Based on Microstructured Beam Model
,”
J. Phys. D
,
46
(
34
), p.
345501
.
You do not currently have access to this content.