A frequency-domain approach for direct parametric analysis of limit points (LPs) of nonlinear dynamical systems is presented in this paper. Instead of computing responses curves for several values of a given system parameter, the direct tracking of LPs is performed. The whole numerical procedure is based on the harmonic balance method (HBM) and can be decomposed in three distinct steps. First, a response curve is calculated by HBM combined with a continuation technique until an LP is detected. Then this starting LP is used to initialize the direct tracking of LPs which is based on the combination of a so-called extended system and a continuation technique. With only one computation, a complete branch of LPs is obtained, which provides the stability boundary with respect to system parameters such as nonlinearity or excitation level. Several numerical examples demonstrate the capabilities and the performance of the proposed method.

References

1.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Baranger
,
T. N.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
S.
,
Almeida
,
P.
, and
Peletan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines. Review and Application
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
401
420
.
2.
Duran
,
C.
,
Manin
,
L.
,
Andrianoely
,
M.-A.
,
Bordegaray
,
C.
,
Battle
,
F.
, and
Dufour
,
R.
,
2015
, “
Effect of Rotor-Stator Contact on the Mass Unbalance Response
,” 9th
IFToMM
International Conference on Rotor Dynamics (Mechanisms and Machine Science),
P.
Pennacchi,
ed., Vol.
21
,
Springer International Publishing
, pp.
1965
1975
.
3.
Chen
,
C.
,
Dai
,
L.
, and
Fu
,
Y.
,
2007
, “
Nonlinear Response and Dynamic Stability of a Cracked Rotor
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
6
), pp.
1023
1037
.
4.
Cheng
,
L.
,
Li
,
N.
,
Chen
,
X.
, and
He
,
Z.
,
2011
, “
The Influence of Crack Breathing and Imbalance Orientation Angle on the Characteristics of the Critical Speed of a Cracked Rotor
,”
J. Sound Vib.
,
330
(
9
), pp.
2031
2048
.
5.
Khonsari
,
M. M.
, and
Chang
,
Y. J.
,
1993
, “
Stability Boundary of Non-Linear Orbits Within Clearance Circle of Journal Bearings
,”
ASME J. Vib. Acoust.
,
115
(
3
), pp.
303
307
.
6.
Brown
,
R. D.
,
Addison
,
P.
, and
Chan
,
A.
,
1994
, “
Chaos in the Unbalance Response of Journal Bearings
,”
Nonlinear Dyn.
,
5
(
4
), pp.
421
432
.
7.
Dakel
,
M.-Z.
,
Baguet
,
S.
, and
Dufour
,
R.
,
2014
, “
Nonlinear Dynamics of a Support-Excited Flexible Rotor With Hydrodynamic Journal Bearings
,”
J. Sound Vib.
,
333
(
10
), pp.
2774
2799
.
8.
Sundararajan
,
P.
, and
Noah
,
S.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
9
19
.
9.
Kim
,
Y.-B.
, and
Noah
,
S.
,
1996
, “
Quasi-Periodic Response and Stability Analysis for a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
190
(
2
), pp.
239
253
.
10.
Von Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.
11.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
New York
.
12.
Berlioz
,
A.
,
Dufour
,
R.
, and
Sinha
,
S.
,
2000
, “
Bifurcation in a Nonlinear Autoparametric System Using Experimental and Numerical Investigations
,”
Nonlinear Dyn.
,
23
(
2
), pp.
175
187
.
13.
Seydel
,
R.
,
2009
,
Practical Bifurcation and Stability Analysis
(Interdisciplinary Applied Mathematics),
Springer
,
New York
.
14.
Moore
,
G.
, and
Spence
,
A.
,
1980
, “
The Calculation of Turning Points of Nonlinear Equations
,”
SIAM J. Numer. Anal.
,
17
(
4
), pp.
567
576
.
15.
Wriggers
,
P.
, and
Simo
,
J. C.
,
1990
, “
A General Procedure for the Direct Computation of Turning and Bifurcation Points
,”
Int. J. Numer. Methods Eng.
,
30
(1), pp. 155–176.
16.
Battini
,
J.-M.
,
Pacoste
,
C.
, and
Eriksson
,
A.
,
2003
, “
Improved Minimal Augmentation Procedure for the Direct Computation of Critical Points
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
16–18
), pp.
2169
2185
.
17.
Petrov
,
E. P.
,
2007
, “
Direct Parametric Analysis of Resonance Regimes for Nonlinear Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
129
(
3
), pp.
495
502
.
18.
Petrov
,
E. P.
,
2009
, “
Method for Sensitivity Analysis of Resonance Forced Response of Bladed Disks With Nonlinear Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p. 022510.
19.
Liao
,
H.
, and
Wang
,
J.
,
2013
, “
Maximization of the Vibration Amplitude and Bifurcation Analysis of Nonlinear Systems Using the Constrained Optimization Shooting Method
,”
J. Sound Vib.
,
332
(
16
), pp.
3781
3793
.
20.
Baguet
,
S.
, and
Cochelin
,
B.
,
2002
, “
Stability of Thin-Shell Structures and Imperfection Sensitivity Analysis With the Asymptotic Numerical Method
,”
Rev. Eur. Elém. Finis
,
11
(
2–4
), pp.
493
509
.
21.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
22.
Crisfield
,
M.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure That Handles Snap-Through
,”
Comput. Struct.
,
13
(
1
), pp.
55
62
.
23.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2013
, “
A Comparison of Stability Computational Methods for Periodic Solution of Nonlinear Problems With Application to Rotordynamics
,”
Nonlinear Dyn.
,
72
(
3
), pp.
671
682
.
24.
Keller
,
H. B.
,
1977
, “
Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems
,”
Applications of Bifurcation Theory
,
P. H.
Rabinowitz
, ed.,
Academic Press
,
New York
, pp.
359
384
.
25.
Felippa
,
C. A.
,
1987
, “
Traversing Critical Points by Penalty Springs
,”
NUMETA'87 Conference
,
Nijhoff Pubs
,
Dordrecht, Holland
.
26.
Jiang
,
J.
,
2009
, “
Determination of the Global Responses Characteristics of a Piecewise Smooth Dynamical System With Contact
,”
Nonlinear Dyn.
,
57
(
3
), pp.
351
361
.
27.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2014
, “
Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2501
2515
.
28.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1998
,
Rotordynamics Prediction in Engineering
, 2nd ed.,
Wiley
,
New York
.
29.
CAST3M
,
2015
, “
Finite Element Software
,” CEA (French Atomic Energy Commission), http://www-cast3m.cea.fr/
You do not currently have access to this content.