The paper concerns the sound absorption performance of a compound absorber which consists of a parallel arrangement of multiple perforated panel absorbers of different backing cavity depths partially filled with poroelastic polymer materials. Three polymer materials are considered: expandable polystyrene (EPS) foam, polymethacrylimide (PMI) foam, and polyester fiber. The normal incidence sound absorption coefficients of the compound panel absorber are tested experimentally. Results show that the former two foams can achieve similar absorption performance to the rigid cavity configuration, while the resonances shift to lower frequencies due to the changes of effective cavity depths. It is also found that the additional attenuation by polymer foams may improve sound absorption, but the effect is marginal. For polyester fiber, results show that it performs more like a single perforated panel absorber. Finite element simulation of the compound panel absorber is also discussed, and good agreement is observed between simulated and experimental results.

References

1.
Park
,
S. H.
,
2013
, “
A Design Method of Micro-Perforated Panel Absorber at High Sound Pressure Environment in Launcher Fairings
,”
J. Sound Vib.
,
332
(
3
), pp.
521
535
.10.1016/j.jsv.2012.09.015
2.
Allam
,
S.
, and
Åbom
,
M.
,
2011
, “
A New Type of Muffler Based on Microperforated Tubes
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031005
.10.1115/1.4002956
3.
Fuchs
,
H. V.
, and
Zha
,
X.
,
2006
, “
Micro-Perforated Structures as Sound Absorbers—A Review and Outlook
,”
Acta Acust. Acust.
,
92
(
1
), pp.
139
146
.
4.
Kang
,
J.
, and
Brocklesby
,
M. W.
,
2005
, “
Feasibility of Applying Micro-Perforated Absorbers in Acoustic Window Systems
,”
Appl. Acoust.
,
66
(
6
), pp.
669
689
.10.1016/j.apacoust.2004.06.011
5.
Lu
,
Z.
,
Jing
,
X.
,
Sun
,
X.
, and
Dai
,
X.
, “
An Investigation on the Characteristics of a Non-Locally Reacting Acoustic Liner
,”
J. Vib. Control
(in press)10.1177/1077546314546683.
6.
Tao
,
J.
,
Jing
,
R.
, and
Qiu
,
X.
,
2013
, “
Sound Absorption of a Finite Micro-Perforated Panel Backed by a Shunted Loudspeaker
,”
J. Acoust. Soc. Am.
,
135
(
1
), pp.
231
238
10.1121/1.483621.
7.
Park
,
S. H.
,
2013
, “
Acoustic Properties of Micro-Perforated Panel Absorbers Backed by Helmholtz Resonators for the Improvement of Low-Frequency Sound Absorption
,”
J. Sound Vib.
,
332
(
20
), pp.
4895
4911
.10.1016/j.jsv.2013.04.029
8.
Zha
,
X.
,
Kang
,
J.
,
Zhang
,
T.
,
Zhou
,
X.
, and
Fuchs
,
H. V.
,
1994
, “
Application Approach for Microperforated Panel Sound Absorbers
,”
Acta Acust.
,
19
(
4
), pp.
258
265
.
9.
Yairi
,
M.
,
Sakagami
,
K.
,
Takebayashi
,
K.
, and
Morimoto
,
M.
,
2011
, “
Excess Sound Absorption at Normal Incidence by Two Microperforated Panel Absorbers With Different Impedance
,”
Acoust. Sci. Technol.
,
32
(
5
), pp.
194
200
.10.1250/ast.32.194
10.
Sakagami
,
K.
,
Nagayama
,
Y.
,
Morimoto
,
M.
, and
Yairi
,
M.
,
2009
, “
Pilot Study on Wideband Sound Absorber Obtained by Combination of Two Different Microperforated (MPP) Absorbers
,”
Acoust. Sci. Technol.
,
30
(
2
), pp.
154
156
.10.1250/ast.30.154
11.
Wang
,
C. Q.
, and
Huang
,
L. X.
,
2011
, “
On the Acoustic Properties of Parallel Arrangement of Multiple Micro-Perforated Panel Absorbers With Different Cavity Depths
,”
J. Acoust. Soc. Am.
,
130
(
1
), pp.
208
218
.10.1121/1.3596459
12.
Sakagami
,
K.
,
Kobatake
,
S.
,
Kano
,
K.
,
Morimoto
,
M.
, and
Yairi
,
M.
,
2011
, “
Sound Absorption Characteristics of a Single Microperforated Panel Absorber Backed by a Porous Absorbent Layer
,”
Acoust. Aust.
,
39
(
3
), pp.
95
100
http://www.acoustics.asn.au/journal/2011/2011_39_3_Sakagami.pdf.
13.
Maa
,
D. Y.
,
1987
, “
Microperforated Panel Wide-Band Absorber
,”
Noise Control Eng. J.
,
29
(
3
), pp.
77
84
.10.3397/1.2827694
14.
Allard
,
J. F.
,
1993
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
,
Elsevier Applied Science
,
New York
.
15.
Utsuno
,
H.
,
Tanaka
,
T.
,
Fujikawa
,
T.
, and
Seybert
,
A. F.
,
1989
, “
Transfer Function Method for Measuring Characteristic Impedance and Propagation Constant of Porous Materials
,”
J. Acoust. Soc. Am.
,
86
(
2
), pp.
637
643
.10.1121/1.398241
16.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Dashen
,
R.
,
1987
, “
Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,”
J. Fluid Mech.
,
176
(
1
), pp.
379
402
.10.1017/S0022112087000727
17.
ISO,
1998
, “
Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 10534-2.
18.
Delany
,
M. E.
, and
Bazley
,
E. N.
,
1970
, “
Acoustic Properties of Fibrous Absorbent Materials
,”
Appl. Acoust.
,
3
(
2
), pp.
105
116
.10.1016/0003-682X(70)90031-9
19.
Bies
,
D. A.
, and
Hansen
,
C. H.
,
1980
, “
Flow Resistance Information for Acoustic Design
,”
Appl. Acoust.
,
13
(
5
), pp.
357
391
.10.1016/0003-682X(80)90002-X
20.
Nennig
,
B.
,
Perrey-Debain
,
E.
, and
Tahar
,
M. B.
,
2010
, “
A Mode Matching Method for Modeling Dissipative Silencers Lined With Poroelastic Materials and Containing Mean Flow
,”
J. Acoust. Soc. Am.
,
128
(
6
), pp.
3308
3320
.10.1121/1.3506346
21.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.10.1121/1.1908239
22.
Attenborough
,
K.
,
1982
, “
Acoustical Characteristics of Porous Materials
,”
Phys. Rep.
,
82
(
3
), pp.
179
227
.10.1016/0370-1573(82)90131-4
23.
Wojtowicki
,
J. L.
, and
Panneton
,
R.
,
2005
, “
Improving the Efficiency of Sealing Parts for Hollow Body Network
,”
SAE
Technical Paper No. 2005-01-227910.4271/2005-01-2279.
24.
Chevillotte
,
F.
, and
Panneton
,
R.
,
2007
, “
Elastic Characterization of Closed Cell Foams From Impedance Tube Absorption Tests
,”
J. Acoust. Soc. Am.
,
122
(
5
), pp.
2653
2660
.10.1121/1.2783126
You do not currently have access to this content.