The main aim of room acoustics is to predict reverberant properties of enclosures from measured or numerically simulated room responses. In this paper, this issue was examined in low-frequency range where acoustic characteristics of rooms are strongly frequency dependent due to differences in a modal damping. A theoretical description of a decaying sound field was based on a modal expansion of the sound pressure, and a reverberant response of the room was initiated by emission of Dirac delta time impulse or by switching off a time-harmonic source. Theoretical findings were employed to determine reverberant characteristics of a coupled-room system containing two connected rectangular subrooms. Simulation results have shown that a sound decay after steady-state harmonic excitation is strongly influenced by the sound frequency and due to large fluctuations in a decaying pressure; numerical techniques for smoothing decay curves are needed. Calculations also revealed that in some one-third octave bands, the decay function found via backward integration of squared room impulse response (RIR) changes very irregularly impeding a proper qualifying of nature of sound decay.

References

1.
Bradley
,
J.
,
2005
, “
Using ISO 3382 Measures, and Their Extensions, to Evaluate Acoustical Conditions in Concert Halls
,”
Acoust. Sci. Technol.
,
26
(
2
), pp.
170
178
.10.1250/ast.26.170
2.
Cerdá
,
S.
,
Giménez
,
A.
,
Montell
,
R.
,
Barba
,
A.
,
Lacatis
,
R.
,
Segura
,
J.
, and
Cibrián
,
R.
,
2013
, “
On the Relations Between Audio Features and Room Acoustic Parameters of Auralizations
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
064501
.10.1115/1.4023835
3.
Magrini
,
A.
, and
Ricciardi
,
P.
,
2003
, “
Churches as Auditoria: Analysis of Acoustical Parameters for a Better Understanding of Sound Quality
,”
Build. Acoust.
,
10
(
2
), pp.
135
157
.10.1260/135101003768965988
4.
Martellotta
,
F.
,
2009
, “
Identifying Acoustical Coupling by Measurements and Prediction-Models for St. Peter's Basilica in Rome
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
1175
1185
.10.1121/1.3192346
5.
Anderson
,
J.
,
Bratos-Anderson
,
M.
, and
Doany
,
P.
,
1997
, “
The Acoustics of a Large Space With a Repetitive Pattern of Coupled Rooms
,”
J. Sound Vib.
,
208
(
2
), pp.
313
329
.10.1006/jsvi.1997.1219
6.
Jasa
,
T.
, and
Xiang
,
N.
,
2009
, “
Efficient Estimation of Decay Parameters in Acoustically Coupled-Spaces Using Slice Sampling
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
1269
1279
.10.1121/1.3158934
7.
Summers
,
J.
,
Torres
,
R.
, and
Shimizu
,
Y.
,
2004
, “
Statistical-Acoustics Models of Energy Decay in Systems of Coupled Rooms and Their Relation to Geometrical Acoustics
,”
J. Acoust. Soc. Am.
,
116
(
2
), pp.
958
969
.10.1121/1.1763974
8.
Summers
,
J.
,
2012
, “
Accounting for Delay of Energy Transfer Between Coupled Rooms in Statistical-Acoustics Models of Reverberant-Energy Decay
,”
J. Acoust. Soc. Am.
,
132
(
2
), pp.
EL129
EL134
.10.1121/1.4734591
9.
Schroeder
,
M.
,
1996
, “
The ‘Schroeder Frequency’ Revisited
,”
J. Acoust. Soc. Am.
,
99
(
5
), pp.
3240
3241
.10.1121/1.414868
10.
Xiang
,
N.
,
Yun Jing
,
Y.
, and
Bockman
,
A.
,
2009
, “
Investigation of Acoustically Coupled Enclosures Using a Diffusion-Equation Model
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
1187
1198
.10.1121/1.3168507
11.
Luizard
,
P.
,
Polack
,
J.-P.
, and
Katz
,
B.
,
2014
, “
Sound Energy Decay in Coupled Spaces Using a Parametric Analytical Solution of a Diffusion Equation
,”
J. Acoust. Soc. Am.
,
135
(
5
), pp.
2765
2776
.10.1121/1.4870706
12.
Summers
,
J.
,
Torres
,
R.
,
Shimizu
,
Y.
, and
Dalenbäk
,
B.
,
2005
, “
Adapting a Randomized Beam-Axis-Tracing Algorithm to Modeling of Coupled Rooms Via Late-Part Ray Tracing
,”
J. Acoust. Soc. Am.
,
118
(
3
), pp.
1491
1502
.10.1121/1.2000772
13.
Lehmann
,
E.
, and
Johansson
,
A.
,
2008
, “
Prediction of Energy Decay in Room Impulse Responses Simulated With an Image-Source Model
,”
J. Acoust. Soc. Am.
,
124
(
1
), pp.
269
277
.10.1121/1.2936367
14.
Sum
,
K.
, and
Pan
,
J.
,
2006
, “
Geometrical Perturbation of an Inclined Wall on Decay Times of Acoustic Modes in a Trapezoidal Cavity With an Impedance Surface
,”
J. Acoust. Soc. Am.
,
120
(
6
), pp.
3730
3743
.10.1121/1.2357718
15.
Meissner
,
M.
,
2010
, “
Simulation of Acoustical Properties of Coupled Rooms Using Numerical Technique Based on Modal Expansion
,”
Acta Phys. Pol., A
,
118
(
1
), pp.
123
127
.
16.
Fazenda
,
B.
,
Wankling
,
M.
,
Hargreaves
,
J.
,
Elmer
,
L.
, and
Hirst
,
J.
,
2012
, “
Subjective Preference of Modal Control Methods in Listening Rooms
,”
J. Audio Eng. Soc.
,
60
(
5
), pp.
338
349
.
17.
Welti
,
T.
, and
Devantier
,
A.
,
2006
, “
Low-Frequency Optimization Using Multiple Subwoofers
,”
J. Audio Eng. Soc.
,
54
(
5
), pp.
347
364
.
18.
Bradley
,
D.
, and
Wang
,
L.
,
2009
, “
Quantifying the Double Slope Effect in Coupled Volume Room Systems
,”
Build. Acoust.
,
16
(
1
), pp.
105
123
.10.1260/135101009788913275
19.
Xiang
,
N.
,
Goggans
,
P.
,
Jasa
,
T.
, and
Robinson
,
P.
,
2011
, “
Bayesian Characterization of Multiple-Slope Sound Energy Decays in Coupled-Volume Systems
,”
J. Acoust. Soc. Am.
,
129
(
2
), pp.
741
752
.10.1121/1.3518773
20.
Bradley
,
D.
, and
Wang
,
L.
,
2010
, “
Optimum Absorption and Aperture Parameters for Realistic Coupled Volume Spaces Determined From Computational Analysis and Subjective Testing Results
,”
J. Acoust. Soc. Am.
,
127
(
1
), pp.
223
232
.10.1121/1.3268604
21.
Meissner
,
M.
,
2009
, “
Computer Modelling of Coupled Spaces: Variations of Eigenmodes Frequency Due to a Change in Coupling Area
,”
Arch. Acoust.
,
34
(
2
), pp.
157
168
.
22.
Meissner
,
M.
,
2009
, “
Spectral Characteristics and Localization of Modes in Acoustically Coupled Enclosures
,”
Acta Acust. Acust.
,
95
(
2
), pp.
300
305
.10.3813/AAA.918152
23.
Meissner
,
M.
,
2007
, “
Computational Studies of Steady-State Sound Field and Reverberant Sound Decay in a System of Two Coupled Rooms
,”
Cent. Eur. J. Phys.
,
5
(
3
), pp.
293
312
.10.2478/s11534-007-0016-7
24.
Kuttruff
,
H.
,
2009
,
Room Acoustics
, 5th ed.,
Spon Press
,
Abingdon, UK
, pp.
94
96
.
25.
Meissner
,
M.
,
2008
, “
Influence of Wall Absorption on Low-Frequency Dependence of Reverberation Time in Room of Irregular Shape
,”
Appl. Acoust.
,
69
(
7
), pp.
583
590
.10.1016/j.apacoust.2007.02.004
26.
Meissner
,
M.
,
2013
, “
Acoustic Behaviour of Lightly Damped Rooms
,”
Acta Acust. Acust.
,
99
(
5
), pp.
845
847
.10.3813/AAA.918663
27.
Hahn
,
S.
,
1996
,
The Hilbert Transforms in Signal Processing
,
Artech House
,
Boston, MA
, pp.
3
54
.
28.
Meissner
,
M.
,
2009
, “
Application of Hilbert Transform-Based Methodology to Computer Modelling of Reverberant Sound Decay in Irregularly Shaped Rooms
,”
Arch. Acoust.
,
34
(
4
), pp.
491
505
.
29.
Draper
,
N.
, and
Smith
,
H.
,
1998
,
Applied Regression Analysis
, 3rd ed.,
Wiley
,
New York
, pp.
461
472
.
30.
Schroeder
,
M.
,
1965
, “
New Method of Measuring Reverberation Time
,”
J. Acoust. Soc. Am.
,
37
(
3
), pp.
409
412
.10.1121/1.1909343
31.
Nakayama
,
T.
, and
Yakubo
,
K.
,
2001
, “
The Forced Oscillator Method: Eigenvalue Analysis and Computing Linear Response Functions
,”
Phys. Rep.
,
349
(
3
), pp.
239
299
.10.1016/S0370-1573(00)00115-0
32.
Botteldooren
,
D.
,
1995
, “
Finite-Difference Time-Domain Simulation of Low-Frequency Room Acoustic Problems
,”
J. Acoust. Soc. Am.
,
98
(
6
), pp.
3302
3308
.10.1121/1.413817
You do not currently have access to this content.