The eigensensitivity analysis does not meet the increasing industrial requirements of the dynamic performance of a vehicle transmission system. To reduce vibration, it is necessary to include response sensitivity in the guideline in the design stage. In this study, we developed a nonlinear lateral–torsional coupling spur gear system model considering the effect of time-varying mesh stiffness, clearance, mass eccentricity, and transmission error. Then the dynamic response sensitivity to system parameters was systematically analyzed by taking the shaft torsional stiffness, for example. The equation of response sensitivity was deduced by a direct method (DM) based on the fitting of the clearance function curve using a polynomial function. In allusion to the characteristic of the aperiodicity of response sensitivity curves of the nonlinear system in the time domain, a novel assessment method—differential sensitivity based on the root mean square (RMS) of response is proposed. This method provides statistical results in a certain range, thus avoiding the inaccuracy of the partial amplitude. The vibrational energy of modified system (MS) can also be estimated. All the abovementioned characteristics make it possible to provide the theoretical support for dynamic modification, model updating, and optimal design.

References

1.
Chen
,
C. S.
,
Natsiavas
,
S.
, and
Nelson
,
H. D.
,
1998
, “
Coupled Lateral-Torsional Vibration of a Gear-Pair System Supported by a Squeeze Film Damper
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
860
867
.10.1115/1.2893912
2.
Botman
,
M.
,
1976
, “
Epicyclic Gear Vibrations
,”
ASME J. Manuf. Sci. Eng.
,
98
(
3
), pp.
811
815
.10.1115/1.3439034
3.
Cunliffe
,
F.
,
Smith
,
J. D.
, and
Welbourn
,
D. B.
,
1974
, “
Dynamic Tooth Loads in Epicyclic Gears
,”
ASME J. Manuf. Sci. Eng.
,
96
(
2
), pp.
578
584
.10.1115/1.3438367
4.
Saada
,
A.
, and
Velex
,
P.
,
1995
, “
An Extended Model for the Analysis of the Dynamic Behavior of Planetary Trains
,”
ASME J. Mech. Des.
,
117
(
2A
), pp.
241
247
.10.1115/1.2826129
5.
Kahraman
,
A.
,
1994
, “
Dynamic Analysis of a Multi-Mesh Helical Gear Train
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
706
712
.10.1115/1.2919440
6.
Kahraman
,
A.
,
1994
, “
Natural Modes of Planetary Gear Trains
,”
J. Sound Vib.
,
173
(
1
), pp.
125
130
.10.1006/jsvi.1994.1222
7.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
316
321
.10.1115/1.2893982
8.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
,”
J. Sound Vib.
,
228
(
1
), pp.
109
128
.10.1006/jsvi.1999.2398
9.
Guo
,
Y. C.
, and
Parker
,
R. G.
,
2010
, “
Sensitivity of General Compound Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011006
.10.1115/1.4000461
10.
Huang
,
Y.
,
Liu
,
H.
,
Chen
,
Y. Q.
, and
Xiang
,
C. L.
,
2014
, “
Response Sensitivity of the Linear Vibration of the Gear System of the Vehicle Transmission
,”
J. Vib. Eng.
,
27
(
3
), pp.
333
340
.
11.
Petrov
,
E. P.
,
2008
, “
Method for Sensitivity Analysis of Resonance Forced Response of Bladed Disks With Nonlinear Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022510
.10.1115/1.2969094
12.
Karagiannis
,
I.
, and
Theodossiades
,
S.
,
2013
, “
An Alternative Formulation of the Dynamic Transmission Error to Study the Oscillations of Automotive Hypoid Gears
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011001
.10.1115/1.4025206
13.
Walker
,
D.
, and
Zhang
,
N.
,
2014
, “
Transmission of Engine Harmonics to Synchronizer Mechanisms in Dual Clutch Transmissions
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
051009
.10.1115/1.4028079
14.
Özgüven
,
H. N.
,
1988
, “
Mathematical Models Used in Gear Dynamics—A Review
,”
J. Sound Vib.
,
121
(
3
), pp.
383
411
.10.1016/S0022-460X(88)80365-1
15.
Munro
,
R. G.
,
1962
, “
The Dynamic Behaviour of Spur Gears
,” Ph.D. dissertation, Cambridge University, Cambridge, UK.
16.
Lin
,
H. H.
,
Huston
,
R. L.
, and
Coy
,
J. J.
,
1988
, “
On Dynamic Loads in Parallel Shaft Transmissions, Part I—Modelling and Analysis
,”
ASME J. Mech. Des.
,
110
(
2
), pp.
221
225
.10.1115/1.3258929
17.
Lin
,
H. H.
,
Huston
,
R. L.
, and
Coy
,
J. J.
,
1988
, “
On Dynamic Loads in Parallel Shaft Transmissions, Part II—Parameter Study
,”
ASME J. Mech. Des.
,
110
(
2
), pp.
226
229
.10.1115/1.3258930
18.
Benton
,
M.
, and
Seireg
,
A.
,
1978
, “
Simulation of Resonances and Instability Conditions in Pinion-Gear Systems
,”
ASME J. Mech. Des.
,
100
(
1
), pp.
26
32
.10.1115/1.3453888
19.
Benton
,
M.
, and
Seireg
,
A.
,
1981
, “
Factors Influencing Instability and Resonances in Geared Systems
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
372
378
.10.1115/1.3254917
20.
Wang
,
K. L.
, and
Cheng
,
H. S.
,
1981
, “
A Numerical Solution to the Dynamic Load, Film Thickness, and Surface Temperatures in Spur Gears, Part I: Analysis
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
177
187
.10.1115/1.3254859
21.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Interactions Between Time-Varying Mesh Stiffness and Clearance Non-Linearities in a Geared System
,”
J. Sound Vib.
,
146
(
1
), pp.
135
156
.10.1016/0022-460X(91)90527-Q
22.
Yang
,
C.
, and
Adams
,
D. E.
,
2009
, “
Predicting Changes in Vibration Behavior Using First- and Second-Order Iterative Embedded Sensitivity Functions
,”
J. Sound Vib.
,
323
(
1–2
), pp.
173
193
.10.1016/j.jsv.2008.12.016
23.
Yang
,
C.
, and
Adams
,
D. E.
,
2010
, “
Predicting Changes in Vibration Behavior With Respect to Multiple Variables Using Empirical Sensitivity Functions
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061004
.10.1115/1.4001843
You do not currently have access to this content.