We consider nonlinear interactions in systems of order-tuned torsional vibration absorbers with sets of absorbers tuned to different orders. In all current applications, absorber systems are designed to reduce torsional vibrations at a single order. However, when two or more excitation orders are present and absorbers are introduced to address different orders, nonlinear interactions become possible under certain resonance conditions. Under these conditions, a common example of which occurs for orders n and 2n, crosstalk between the absorbers, acting through the rotor inertia, can result in instabilities that are detrimental to system response. In order to design absorber systems that avoid these interactions, and to explore possible improved performance with sets of absorbers tuned to different orders, we develop predictive models that allow one to examine the effects of absorber mass distribution and tuning. These models are based on perturbation methods applied to the system equations of motion, and they yield system response features, including absorber and rotor response amplitudes and stability, as a function of parameters of interest. The model-based analytical results are compared against numerical simulations of the complete nonlinear equations of motion, and are shown to be in good agreement. These results are useful for the selection of absorber parameters to achieve desired performance. For example, they allow for approximate closed form expressions for the ratio of absorber masses at the two orders that yield optimal performance. It is also found that utilizing multiple order absorber systems can be beneficial for system stability, even when only a single excitation order is present.

References

1.
Alsuwaiyan
,
A. S.
,
1999
, “
Performance, Stability, and Localization of Systems of Vibration Absorbers
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
2.
Chao
,
C. P.
, and
Shaw
,
S. W.
,
2000
, “
The Dynamic Response of Multiple Pairs of Subharmonic Torsional Vibration Absorbers
,”
J. Sound Vib.
,
231
, pp.
411
431
.10.1006/jsvi.1999.2722
3.
Denman
,
H. H.
,
1992
, “
Tautochronic Bifilar Pendulum Torsion Absorbers for Reciprocating Engines
,”
J. Sound Vib.
,
159
, pp.
251
277
.10.1016/0022-460X(92)90035-V
4.
Nester
,
T. M.
,
2002
, “
Experimental Investigation of Circular Path Centrifugal Pendulum Vibration Absorbers
,” Master's thesis, Michigan State University, East Lansing, MI.
5.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover
,
New York
.
6.
KerWilson
,
1968
,
Practical Solutions of Torsional Vibration Problems
,
Chapman and Hall
,
London
.
7.
Nester
,
T.
,
Haddow
,
A.
,
Shaw
,
S.
,
Brevick
,
J.
, and
Borowski
,
V.
,
2003
, “
Vibration Reduction in a Variable Displacement Engine Using Pendulum Absorbers
,”
Proceedings of the SAE Noise and Vibration Conference and Exhibition, Traverse City, MI, May 5
,
SAE
Technical Paper 2003-01-148410.4271/2003-01-1484.
8.
Swank
,
M.
, and
Lindemann
,
P.
,
2011
, “
Dynamic Absorbers for Modern Powertrains
,”
SAE
Technical Paper 2011-01-1554.10.4271/2011-01-1554
9.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
,
1998
,
Theory of Vibration
,
Prentice-Hall
,
Englewood Cliffs, MA
.
10.
Monroe
,
R. J. W. S. S.
, and
Haddow
,
A. H. G. B. K.
,
2011
, “
Accounting for Roller Dynamics in the Design of Bifilar Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061002
.10.1115/1.4003942
11.
Hosek
,
M.
,
Elmali
,
H.
, and
Olgac
,
N.
,
1997
, “
A Tunable Torsional Vibration Absorber: The Centrifugal Delayed Resonator
,”
J. Sound Vib.
,
205
, pp.
151
165
.10.1006/jsvi.1997.0996
12.
Newland
,
D. E.
,
1964
, “
Nonlinear Aspects of the Performance of Centrifugal Pendulum Vibration Absorbers
,”
ASME J. Eng. Ind.
,
86
(
3
), pp.
257
263
.10.1115/1.3670529
13.
Alsuwaiyan
,
A.
, and
Shaw
,
S. W.
,
2002
, “
Performance and Dynamic Stability of General-Path Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
252
, pp.
791
815
.10.1006/jsvi.2000.3534
14.
Shaw
,
S. W.
, and
Geist
,
B. K.
,
2010
, “
Tuning for Performance and Stability in Systems of Nearly-Tautochronic Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
132
(
4
), p.
041005
.10.1115/1.4000840
15.
Shaw
,
S.
,
Orlowski
,
M.
,
Haddow
,
A.
, and
Geist
,
B.
,
2008
, “
Transient Dynamics of Centrifugal Pendulum Vibration Absorbers
,”
Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, February 17–22, Paper No. 2008-20119.
16.
Alsuwaiyan
,
A.
, and
Shaw
,
S. W.
,
2003
, “
Steady-State Responses of Systems of Nearly-Identical Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
125
, pp.
80
87
.10.1115/1.1522420
17.
Nayfeh
,
A.
,
2000
,
Nonlinear Interactions: Analytical, Computational, and Experimental Methods
,
John Wiley and Sons
,
New York
.
18.
Lee
,
C.-T.
,
Shaw
,
S. W.
, and
Coppola
,
V. T.
,
1997
, “
A Subharmonic Vibration Absorber for Rotating Machinery
,”
ASME J. Vib. Acoust.
,
119
(
4
), pp.
590
595
.10.1115/1.2889766
19.
Chao
,
C. P.
, and
Shaw
,
S. W.
,
1997
, “
Stability of the Unison Response for a Rotating System With Multiple Centrifugal Pendulum Vibration Absorbers
,”
J. Appl. Mech.
,
64
(
1
), pp.
149
156
.10.1115/1.2787266
20.
Vidmar
,
B.
,
Feeny
,
B.
,
Shaw
,
S.
,
Haddow
,
A.
,
Geist
,
B.
, and
Verhanovitz
,
N.
,
2011
, “
The Effects of Coulomb Friction on the Performance of Centrifugal Pendulum Vibration Absorbers
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
589
600
.10.1007/s11071-011-0289-7
21.
Shaw
,
S. W.
,
Schmitz
,
P. M.
, and
Haddow
,
A. G.
,
2006
, “
Dynamics of Tautochronic Pendulum Vibration Absorbers: Theory and Experiment
,”
J. Comput. Nonlinear Dyn.
,
1
, pp.
283
293
.10.1115/1.2338652
22.
Monroe
,
R.
, and
Shaw
,
S.
,
2011
, “
Nonlinear Transient Dynamics of Centrifugal Pendulum Vibration
,”
The 2011 ASME International Design Engineering Technical Conferences, Washington, DC, August 28–31
,
ASME
Paper No. DETC2011-48353.10.1115/DETC2011-48353
23.
Monroe
,
R. J.
, and
Shaw
,
S. W.
,
2013
, “
Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011017
.10.1115/1.4007561
24.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
25.
Ermentrout
,
B.
,
2002
, Xppaut (software), http://www.math.pitt.edu/bard/xpp/xpp.html
26.
Doedel
,
E.
,
1996
, AUTO (software), http://cmvl.cs.concordia.ca/auto/
You do not currently have access to this content.