Rounding of sharp corners of a membrane (or waveguide) is unavoidable in practice. The natural vibration frequencies of polygonal membranes with rounded vertices are studied by introducing a new family of homotopy shapes and using an efficient improved Ritz method.
References
1.
Rayleigh
, J. W. S.
, 1945
, The Theory of Sound
, 2nd ed., Vol. 1
, Dover
, New York
, Chap. 9.2.
Weaver
, W.
, Timoshenko
, S. P.
, and Young
, G. H.
, 1990
, Vibration Problems in Engineering
, 5th ed., Wiley
, New York
, Chap. 5.3.
Ng
, F. L.
, 1974
, “Tabulation of Methods for the Numerical Solution of the Hollow Waveguide Problem
,” IEEE Trans. Microwave Theory Tech.
, 22
, pp. 322
-329
.10.1109/TMTT.1974.11282174.
Kuttler
, J. R.
, and Sigillito
, V. G.
, 1984
, “Eigenvalues of the Laplacian in Two Dimensions
,” SIAM Rev.
, 26
, pp. 163
-193
.10.1137/10260335.
Leissa
, A. W.
, 1969
, Vibration of Plates, NASA SP-160
, NASA
, Washington D.C.
, Chap 8.6.
Conway
, H. D.
, 1961
, “The Bending, Buckling and Flexural Vibration of Simply Supported Polygonal Plates by Point-Matching
,” J. Appl. Mech.
, 28
, pp. 288
–291
.10.1115/1.36416707.
Shahady
, P. A.
, Passarelli
, R.
, and Laura
, P. A.
, 1967
, “Application of Complex-Variable Theory to the Determination of the Fundamental Frequency of Vibrating Plates
,” J. Acoust. Soc. Am.
, 42
, pp. 806
–809
.10.1121/1.19106528.
Irie
, T.
, Yamada
, G.
, and Umesato
, K.
, 1981
, “Free Vibration of Regular Polygonal Plates With Simply Supported Edges
,” J. Acoust. Soc. Am.
, 69
, pp. 1330
–1336
.10.1121/1.3858039.
Liew
, K. M.
, and Lam
, K. Y.
, 1991
, “A Set of Orthogonal Plate Functions for Flexural Vibration of Regular Polygonal Plates
,” J. Vibr. Acoust.
, 113
, pp. 182
–186
.10.1115/1.293016710.
Leissa
, A. W.
, 2005
, “The Historical Bases of the Rayleigh and Ritz Methods
,” J. Sound Vib.
, 287
, pp. 961
–978
.10.1016/j.jsv.2004.12.02111.
Schelkunoff
, S. A.
, 1943
, Electromagnetic Waves
, Van Nostrand
, New York
, pp. 393
–394
.12.
Wang
, C. Y.
, 1998
, “On the Polygonal Membrane With a Circular Core
,” J. Sound Vib.
, 215
, pp. 195
–199
.10.1006/jsvi.1998.165413.
Zhang
, S. J.
, and Shen
, Y. C.
, 1995
, “Eigenmode Sequence for an Elliptical Waveguide With Arbitrary Ellipticity
,” IEEE Trans. Microwave Theory Tech.
, 43
, pp. 227
–230
.10.1109/22.36298314.
Wang
, B. K.
, Lam
, K. Y.
, Leong
, M. S.
, and Kooi
, P. S.
, 1994
, “Elliptical Waveguide Analysis Using Improved Polynomial Approximation
,” IEE Proc. Microwaves, Antennas Propag.
, 141
, pp. 483
–488
.10.1049/ip-map:1994140915.
Lin
, S. L.
, Li
, L. W.
, Yeo
, T. S.
, and Leong
, M. S.
, 2000
, “Analysis of Hollow Conducting Waveguides Using Superquadratic Functions—A Unified Representation
,” IEEE Trans. Microwave Theory Tech.
, 48
, pp. 876
–880
.10.1109/22.84189316.
Wilson
, H. B.
, and Scharstein
, R. W.
, 2007
, “Computing Elliptic Membrane High Frequencies by Mathieu and Galerkin Methods
,” J. Eng. Math.
, 57
, pp. 41
–55
.10.1007/s10665-006-9070-117.
Shu
, C.
, 2000
, “Analysis of Elliptical Waveguides by Differential Quadrature Method
,” IEEE Trans. Microwave Theory Tech.
, 48
, pp. 319
–322
.10.1109/22.82178618.
Weinstock
, R.
, 1952
, Calculus of Variations
, McGraw–Hill
, New York
.Copyright © 2013 by ASME
You do not currently have access to this content.