Rounding of sharp corners of a membrane (or waveguide) is unavoidable in practice. The natural vibration frequencies of polygonal membranes with rounded vertices are studied by introducing a new family of homotopy shapes and using an efficient improved Ritz method.

References

1.
Rayleigh
,
J. W. S.
,
1945
,
The Theory of Sound
, 2nd ed., Vol.
1
,
Dover
,
New York
, Chap. 9.
2.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
G. H.
,
1990
,
Vibration Problems in Engineering
, 5th ed.,
Wiley
,
New York
, Chap. 5.
3.
Ng
,
F. L.
,
1974
, “
Tabulation of Methods for the Numerical Solution of the Hollow Waveguide Problem
,”
IEEE Trans. Microwave Theory Tech.
,
22
, pp.
322
-
329
.10.1109/TMTT.1974.1128217
4.
Kuttler
,
J. R.
, and
Sigillito
,
V. G.
,
1984
, “
Eigenvalues of the Laplacian in Two Dimensions
,”
SIAM Rev.
,
26
, pp.
163
-
193
.10.1137/1026033
5.
Leissa
,
A. W.
,
1969
,
Vibration of Plates, NASA SP-160
,
NASA
,
Washington D.C.
, Chap 8.
6.
Conway
,
H. D.
,
1961
, “
The Bending, Buckling and Flexural Vibration of Simply Supported Polygonal Plates by Point-Matching
,”
J. Appl. Mech.
,
28
, pp.
288
291
.10.1115/1.3641670
7.
Shahady
,
P. A.
,
Passarelli
,
R.
, and
Laura
,
P. A.
,
1967
, “
Application of Complex-Variable Theory to the Determination of the Fundamental Frequency of Vibrating Plates
,”
J. Acoust. Soc. Am.
,
42
, pp.
806
809
.10.1121/1.1910652
8.
Irie
,
T.
,
Yamada
,
G.
, and
Umesato
,
K.
,
1981
, “
Free Vibration of Regular Polygonal Plates With Simply Supported Edges
,”
J. Acoust. Soc. Am.
,
69
, pp.
1330
1336
.10.1121/1.385803
9.
Liew
,
K. M.
, and
Lam
,
K. Y.
,
1991
, “
A Set of Orthogonal Plate Functions for Flexural Vibration of Regular Polygonal Plates
,”
J. Vibr. Acoust.
,
113
, pp.
182
186
.10.1115/1.2930167
10.
Leissa
,
A. W.
,
2005
, “
The Historical Bases of the Rayleigh and Ritz Methods
,”
J. Sound Vib.
,
287
, pp.
961
978
.10.1016/j.jsv.2004.12.021
11.
Schelkunoff
,
S. A.
,
1943
,
Electromagnetic Waves
,
Van Nostrand
,
New York
, pp.
393
394
.
12.
Wang
,
C. Y.
,
1998
, “
On the Polygonal Membrane With a Circular Core
,”
J. Sound Vib.
,
215
, pp.
195
199
.10.1006/jsvi.1998.1654
13.
Zhang
,
S. J.
, and
Shen
,
Y. C.
,
1995
, “
Eigenmode Sequence for an Elliptical Waveguide With Arbitrary Ellipticity
,”
IEEE Trans. Microwave Theory Tech.
,
43
, pp.
227
230
.10.1109/22.362983
14.
Wang
,
B. K.
,
Lam
,
K. Y.
,
Leong
,
M. S.
, and
Kooi
,
P. S.
,
1994
, “
Elliptical Waveguide Analysis Using Improved Polynomial Approximation
,”
IEE Proc. Microwaves, Antennas Propag.
,
141
, pp.
483
488
.10.1049/ip-map:19941409
15.
Lin
,
S. L.
,
Li
,
L. W.
,
Yeo
,
T. S.
, and
Leong
,
M. S.
,
2000
, “
Analysis of Hollow Conducting Waveguides Using Superquadratic Functions—A Unified Representation
,”
IEEE Trans. Microwave Theory Tech.
,
48
, pp.
876
880
.10.1109/22.841893
16.
Wilson
,
H. B.
, and
Scharstein
,
R. W.
,
2007
, “
Computing Elliptic Membrane High Frequencies by Mathieu and Galerkin Methods
,”
J. Eng. Math.
,
57
, pp.
41
55
.10.1007/s10665-006-9070-1
17.
Shu
,
C.
,
2000
, “
Analysis of Elliptical Waveguides by Differential Quadrature Method
,”
IEEE Trans. Microwave Theory Tech.
,
48
, pp.
319
322
.10.1109/22.821786
18.
Weinstock
,
R.
,
1952
,
Calculus of Variations
,
McGraw–Hill
,
New York
.
You do not currently have access to this content.