The large amplitude vibrations of the inextensional beam resting on the elastic foundation under three-to-one internal resonance are investigated. The inextensional condition and multimodal discretization are used to obtain the equation of in-plane motion and modulation equations. Due to the second-order moment of the subgrade reaction, the quadratic nonlinearity is included in the present model. Moreover, this moment destroys the conservative character of the system. The nonlinear response and the associated stability are examined by means of frequency (force)-response curves, and the shooting method is applied to investigate the dynamic solutions. Particular attention is placed on the effects of the cut-off frequency and boundary conditions. The results show that the cut-off frequency and boundary conditions do not significantly affect the contribution of nonresonant modes to the nonlinear coefficients. Moreover, the effects of foundation models on the three-to-one resonant dynamics of the beam are discussed.

References

1.
Lai
,
Y. C.
,
Ting
,
B. Y.
,
Lee
,
W. S.
, and
Becker
,
B. R.
,
1992
, “
Dynamic Response of Beams on Elastic Foundation
,”
J. Struct. Eng.
,
118
, pp.
853
858
.10.1061/(ASCE)0733-9445(1992)118:3(853)
2.
Valsangkar
,
A. J.
, and
Pradhanang
,
R.
,
1988
, “
Vibrations of Beam-Columns on Two-Parameter Elastic Foundations
,”
Earthquake Eng. Struct. Dyn.
,
16
, pp.
217
225
.10.1002/eqe.4290160205
3.
Wang
,
L.
,
Ma
,
J.
,
Zhao
,
Y.
, and
Liu
,
Q.
,
2011
, “
Refined Modeling and Free Vibration Character of Inextensional Beams on the Elastic Foundation
,”
ASME J. Appl. Mech.
,
(submitted)
.
4.
Manna
,
B.
, and
Baidya
,
D. K.
,
2010
, “
Nonlinear Dynamic Response of Piles Under Horizontal Excitation
,”
J. Geotech. Geoenviron. Eng
.,
136
, pp.
1600
1609
.10.1061/(ASCE)GT.1943-5606.0000388
5.
Pellicano
,
F.
, and
Mastroddi
,
F.
,
1997
, “
Nonlinear Dynamics of a Beam on Elastic Foundation
,”
Nonlinear Dyn.
,
14
, pp.
335
355
.10.1023/A:1008297721253
6.
Coskun
,
I.
, and
Engin
,
H.
,.
1999
, “
Non-Linear Vibrations of a Beam on an Elastic Foundation
,”
J. Sound Vib.
,
223
, pp.
335
354
.10.1006/jsvi.1998.1973
7.
Pellicano
,
F.
, and
Vakakis
,
A. F.
,
2001
, “
Normal Modes and Boundary Layers for a Slender Tensioned Beam on a Nonlinear Foundation
,”
Nonlinear Dyn.
,
25
, pp.
79
93
.10.1023/A:1012986128976
8.
Zhu
,
B.
, and
Leung
,
A. Y. T.
,
2009
, “
Linear and Nonlinear Vibration of Non-Uniform Beams on Two-Parameter Foundations Using p-Elements,
Comput. Geotech.
,
36
, pp.
743
750
.10.1016/j.compgeo.2008.12.006
9.
Nayfeh
,
A. H.
, and
Lacarbonara
,
W.
,
1997
, “
On the Discretization of Distributed-Parameter Systems With Quadratic and Cubic Nonlinearities
,”
Nonlinear Dyn.
,
13
, pp.
203
220
.10.1023/A:1008253901255
10.
Nayfeh
,
A. H.
,
2000
,
Non-Linear Interactions
,
Wiley-Interscience
,
New York
.
11.
Chin
,
C. M.
, and
Nayfeh
,
A. H.
,
1997
, “
Three-to-One Internal Resonances in Hinged-Clamped Beams
,”
Nonlinear Dyn.
,
12
, pp.
129
154
.10.1023/A:1008229503164
12.
Rega
,
G.
,
Lacarbonara
,
W.
,
Nayfeh
,
A. H.
, and
Chin
,
C. M.
,
1999
, “
Multiple Resonances in Suspended Cables: Direct Versus Reduced-Order Models
,”
Int. J. Nonlinear Mech.
,
34
, pp.
901
924
.10.1016/S0020-7462(98)00065-1
13.
Pellicano
,
F.
,
Amabili
,
M.
, and
Vakakis
,
A. F.
,
2000
, “
Nonlinear Vibrations and Multiple Resonances of Fluid-Filled, Circular Shells—Part 2: Perturbation Analysis
,”
ASME J. Vib. Acoust.
,
122
, pp.
355
364
.10.1115/1.1288591
14.
Lacarbonara
,
W.
,
Arafat
,
H. N.
, and
Nayfeh
,
A. H.
,
2005
, “
Non-Linear Interactions in Imperfect Beams at Veering
,”
Int. J. Nonlinear Mech.
,
40
, pp.
987
1003
.10.1016/j.ijnonlinmec.2004.10.006
15.
Wang
,
L.
, and
Zhao
,
Y.
,
2006
, “
Nonlinear Interactions and Chaotic Dynamics of Suspended Cables With Three-to-One Internal Resonances
,”
Int. J. Solids Struct.
,
43
, pp.
7800
7819
.10.1016/j.ijsolstr.2006.04.006
16.
Rega
,
G.
, and
Saetta
,
E.
,
2012
, “
Nonlinear Curvature-Based Model and Resonant Finite-Amplitude Vibrations of Symmetric Cross-Ply Laminates
,”
J. Sound Vib.
,
331
, pp.
2836
2855
.10.1016/j.jsv.2012.01.030
17.
Ansari
,
M.
,
Esmailzadeh
,
E.
, and
Younesian
,
D.
,
2010
, “
Internal-External Resonance of Beams on Non-Linear Viscoelastic Foundation Transversed by Moving Load
,”
Nonlinear Dyn.
,
61
, pp.
163
182
.10.1007/s11071-009-9639-0
18.
Wang
,
L.
,
Ma
,
J.
,
Yang
,
M.
,
Li
,
L.
, and
Zhao
,
Y.
,
2011
, “
Multimode Dynamics of Inextensional Beams on the Elastic Foundation With Two-to-One Internal Resonances
,”
ASME J. Appl. Mech.
, (submitted).
19.
Lacarbonara
,
W.
,
Rega
,
G.
, and
Nayfeh
,
A. H.
,
2003
, “
Resonant Non-Linear Normal Modes. Part I: Analytical Treatment for Structural One-Dimensional Systems
,”
Int. J. Nonlinear Mech.
,
38
, pp.
851
872
.10.1016/S0020-7462(02)00033-1
20.
Srinil
,
N.
,
Rega
,
R.
, and
Chucheepsakul
,
S.
,
2007
, “
Two-to-One Resonant Multi-Modal Dynamics of Horizontal/Inclined Cables, Part I: Theoretical Formulation and Model Validation
,”
Nonlinear Dyn.
,
48
, pp.
231
252
.10.1007/s11071-006-9086-0
21.
Lacarbonara
,
W.
, and
Rega
,
G.
,
2003
, “
Resonant Non-Linear Normal Modes. Part II: Activation/Orthogorality Conditions for Shallow Structural Systems
,”
Int. J. Nonlinear Mech.
,
38
, pp.
873
887
.10.1016/S0020-7462(02)00034-3
22.
Minitab Incorporated, Meet Minitab
,
2003
, Release 14 for Windows, 1st ed.
23.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1994
,
Applied Nonlinear Dynamics
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.