An impedance-based approach for analyzing an axial rod with shear-type damping layer treatment is proposed. The rod and shear-type damping layer are regarded as two subsystems and both impedances are calculated analytically. The system impedance can be obtained through the impedance coupling between the host rod and the damping layer. The shear-type damping layer is regarded as a shear spring with complex shear modulus. Under the traditional model, the damping coefficient diminishes with the increasing frequency. The paper develops two shear-type damping layer models, including the single degree-of-freedom (SDOF) model and continuous model to predict the behavior of the damping layer. Both damping layer models are compared with the traditional model and the system responses from these models are validated by finite element method (FEM) code COMSOL Multiphysics. Results show that the damping coefficients of both the traditional shear-spring model and SDOF model diminish as the increasing frequency so that the system responses are discrepant with that from COMSOL in the high frequency range. On the other hand, the system response from the continuous model is consistent with that from COMSOL in the full frequency range. Hence, the continuous damping layer model can predict a correct damping coefficient in the high frequency range and this property can be also employed to improve the analysis of the constrained-layer damping treated structures. Finally, the modal loss factor and fundamental frequency of the system with respect to different damping layer thicknesses are presented using the developed approach.

References

1.
Gatti
,
G.
,
Brennan
,
M. J.
, and
Gardonio
,
P.
,
2007
, “
Active Damping of a Beam Using a Physically Collocated Accelerometer and Piezoelectric Patch Actuator
,”
J. Sound Vib.
,
303
(
3–5
), pp.
798
813
.10.1016/j.jsv.2007.02.006
2.
Shen
,
I. Y.
,
1994
, “
Hybrid Damping Through Intelligent Constrained Layer Treatments
,”
ASME J. Vib. Acoust.
,
116
(
3
), pp.
341
349
.10.1115/1.2930434
3.
Baz
,
A.
, and
Ro
,
J.
,
1995
, “
Optimum Design and Control of Active Constrained Layers Damping
,”
ASME J. Vib. Acoust.
,
117
(
3
), pp.
135
144
.10.1115/1.2838655
4.
Chantalakhana
,
C.
, and
Stanway
,
R.
,
2001
, “
Active Constrained Layer Damping of Clamped-Clamped Plate Vibrations
,”
J. Sound Vib.
,
241
(
5
), pp.
755
777
.10.1006/jsvi.2000.3317
5.
Liu
,
T. X.
,
Hua
,
H. X.
, and
Zhang
,
Z. Y.
,
2004
, “
Robust Control of Plate Vibration via Active Constrained Layer Damping
,”
Thin Wall. Struct.
,
42
(
3
), pp.
427
448
.10.1016/S0263-8231(03)00131-9
6.
Yildiz
,
A.
, and
Stevens
,
K.
,
1985
, “
Optimum Thickness Distribution of Unconstrained Viscoelastic Damping Layer Treatments for Plates
,”
J. Sound Vib.
,
103
(
2
), pp.
183
199
.10.1016/0022-460X(85)90232-9
7.
Lumsdaine
,
A.
, and
Scott
,
R. A.
,
1998
, “
Shape Optimization of Unconstrained Viscoelastic Layers Using Continuum Finite Elements
,”
J. Sound Vib.
,
216
(
1
), pp.
29
52
.10.1006/jsvi.1998.1668
8.
McNamara
,
R. J.
,
1977
, “
Tuned Mass Dampers for Buildings
,”
J. Struct. Div.
,
103
(
ST9
), pp.
1985
1988
.
9.
Kerwin
,
E. M.
,
1959
, “
Damping of Flexural Waves by a Constrained Viscoelastic Layer
,”
J. Acoust. Soc. Am.
,
31
, pp.
952
962
.10.1121/1.1907821
10.
DiTaranto
,
R. A.
,
1965
, “
Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams
,”
ASME J. Appl. Mech.
,
32
, pp.
881
886
.10.1115/1.3627330
11.
Mead
,
D. J.
, and
Markus
,
S.
,
1969
, “
The Forced Vibration of a Three-Layer, Damped Sandwich Beam With Arbitrary Boundary Conditions
,”
J. Sound Vib.
,
10
, pp.
163
175
.10.1016/0022-460X(69)90193-X
12.
Yan
,
M. J.
, and
Dowell
,
E. H.
,
1972
, “
Governing Equations of Vibrating Constrained-Layer Damping Sandwich Plates and Beams
,”
ASME J. Appl. Mech.
,
39
, pp.
1041
1046
.10.1115/1.3422825
13.
Mead
,
D. J.
, and
Yaman
,
Y.
,
1991
, “
The Harmonic Response of Rectangular Sandwich Plates With Multiple Stiffening: A Flexural Wave Analysis
,”
J. Sound Vib.
,
145
, pp.
409
428
.10.1016/0022-460X(91)90111-V
14.
Chen
,
Y. C.
, and
Huang
,
S. C.
,
1998
, “
A Simplified Theory for the Vibration of Plates With CLD Treatment
,”
J. Wave Mater. Interact.
,
13
, pp.
34
57
.
15.
Lu
,
Y. P.
,
Roscoe
,
A. J.
, and
Douglas
,
B. E.
,
1991
, “
Analysis of the Response of Damped Cylindrical Shells Carrying Discontinuously Constrained Beam Elements
,”
J. Sound Vib.
,
150
, pp.
395
403
.10.1016/0022-460X(91)90894-P
16.
Ramesh
,
T. C.
, and
Ganesan
,
N.
,
1994
, “
Orthotropic Cylindrical Shells With a Viscoelastic Core: A Vibration and Damping Analysis
,”
J. Sound Vib.
,
175
, pp.
535
555
.10.1006/jsvi.1994.1344
17.
Hu
,
Y. C.
, and
Huang
,
S. C.
,
1999
, “
Forced Response of Sandwich Ring With Viscoelastic Core Subjected to Traveling Loads
,”
J. Acoust. Soc. Am.
,
106
, pp.
202
210
.10.1121/1.427049
18.
Zhang
,
X. M.
, and
Erdman
,
A. G.
,
2001
, “
Dynamic Response of Flexible Linkage Mechanisms With Viscoelastic Constrained Layer Damping Treatment
,”
Comput. Struct.
,
13
, pp.
1265
1274
.10.1016/S0045-7949(01)00019-0
19.
Nokes
,
D. S.
, and
Nelson
,
F. C.
,
1968
, “
Constrained Layer Damping With Partial Coverage
,”
Shock Vib. Bull.
,
38
, pp.
5
10
.
20.
Lall
,
A. K.
,
Asnani
,
N. T.
, and
Nakra
,
B. C.
,
1987
, “
Vibration and Damping Analysis of Rectangular Plate With Partially Covered Constrained Viscoelastic Layer
,”
J. Vib. Acoust.
,
109
, pp.
241
247
.10.1115/1.3269427
21.
Lall
,
A. K.
,
Asnani
,
N. T.
, and
Nakra
,
B. C.
,
1988
, “
Damping Analysis of Partially Covered Sandwich Beams
,”
J. Sound Vib.
,
123
, pp.
247
259
.10.1016/S0022-460X(88)80109-3
22.
Zheng
,
H.
,
Tan
,
X. M.
, and
Cai
,
C.
,
2006
, “
Damping Analysis of Beams Covered With Multiple PCLD Patches
,”
Int. J. Mech. Sci.
,
48
, pp.
1371
1383
.10.1016/j.ijmecsci.2006.07.008
23.
Cai
,
C.
,
Zheng
,
H.
, and
Liu
,
G. R.
,
2004
,“
Vibration Analysis of a Beam With PCLD Patch
,”
Appl. Acoust.
,
65
(
11
), pp.
1057
1076
.10.1016/j.apacoust.2004.05.004
24.
Kumar
,
N.
, and
Singh
,
S. P.
,
2010
, “
Experimental Study on Vibration and Damping of Curved Panel Treated With Constrained Viscoelastic Layer
,”
Compos. Struct.
,
92
, pp.
233
243
.10.1016/j.compstruct.2009.07.011
25.
Chantalakhana
,
C.
, and
Stanway
,
R.
,
2000
, “
Active Constrained Layer Damping of Plate Vibrations: A Numerical and Experimental Study of Modal Controllers
,”
Smart Mater. Struct.
,
9
, pp.
940
952
.10.1088/0964-1726/9/6/326
26.
Liang
,
C.
,
Sun
,
F. P.
, and
Rogers
,
C. A.
,
1994
, “
An Impedance Method for Dynamic Analysis of Active Material System
,”
ASME J. Vib. Acoust.
,
116
, pp.
121
128
.10.1115/1.2930387
27.
Zhou
,
S. W.
,
Liang
,
C.
, and
Rogers
,
C. A.
,
1996
, “
An Impedance-Based System Modeling Approach for Induced Strain Actuator-Driven Structures
,”
ASME J. Vib. Acoust.
,
118
, pp.
323
331
.10.1115/1.2888185
28.
Cheng
,
C. C.
, and
Wang
,
P. W.
,
2001
, “
Applications of the Impedance Method on Multiple Piezoelectric Actuators Driven Structures
,”
ASME J. Vib. Acoust.
,
123
(
2
), pp.
262
268
.10.1115/1.1362322
29.
Bishop
,
R. E. D.
, and
Johnson
,
D. C.
,
1979
,
The Mechanics of Vibration
,
University Press
,
Cambridge, UK
, p.
277
.
You do not currently have access to this content.