This study presents a novel approach for enhancing the performance of one of the promising systems in the field of energy harvesting, namely the standing wave thermoacoustic engine. Currently, conventional thermoacoustic engines have been integrated with piezoelectric membranes to harness the acoustic energy associated with this class of engines. In these thermoacoustic-piezoelectric (TAP) harvesters, the acoustic to electric energy conversion efficiency vary typically from 10% to 15%. In this paper, an attempt is made to magnify the electric energy harnessed from the piezo membranes by providing the harvester with a dynamic magnifier. The proposed system will be referred to as a dynamically magnified thermoacoustic-piezo system (DMTAP). The main purpose of the dynamic magnifier, as implied by the name, is to magnify the strain experienced by the piezo-element. With proper selection of the design parameters of such a magnifier, the output power can be significantly increased. The theory as well as the equations governing the operation of the system before and after the addition of the dynamic magnification is presented. Numerical examples are provided to illustrate the performance characteristics and merits of the improved (DMTAP) system as compared with those of a conventional TAP.

References

1.
Swift
,
G. W.
,
1988
, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
,
pp.
1145
1180
.10.1121/1.396617
2.
Backhaus
,
S.
,
Tward
,
E.
, and
Petach
,
M.
,
2004
, “
Traveling-Wave Thermoacoustic Electric Generator
,”
Appl. Phys. Lett.
,
85
,
pp.
1085
1087
.10.1063/1.1781739
3.
Backhaus
,
S.
, and
Swift
G.
,
2000
, “
A Thermoacoustic-Stirling Heat Engine: Detailed Study
”,
J. Acoust. Soc. Am..
,
107
(
6
),
pp.
3148
3166
.10.1121/1.429343
4.
Matveev
,
K.
,
Wekin
,
A.
,
Richards
,
C.
, and
Shafrei-Tehrany
N.
,
2007
,“
On the Coupling Between Standing-Wave Thermoacoustic Engine and Piezoelectric Transducer
,”
Proceedings of IMECE 2007
,
Seattle, WA
,
IMECE2007-41119
.
5.
Keolian
,
R. M.
, and
Bastyr
,
K. J.
,
2006
, “
Thermoacoustic Piezoelectric Generator
,” U.S. Patent No. 7,081,699.
6.
Swift
,
G.
,
2002
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
,
Acoust. Soc. Am.
,
American Institute of Physical Press
,
New York
.
7.
Tijani
,
M. E.
,
Zeegers
,
J. C.
, and
de Waele
,
A.T.
,
2002
, “
The Optimal Stack Spacing for Thermoacoustic Refrigeration
,”
J. Acoust. Soc. Am.
,
112
(
1
),
pp.
128
133
.10.1121/1.1487842
8.
Tijani
,
M. E.
,
Zeegers
,
J. C.
, and
de Waele
A.T.
,
2002
, “
Design of Thermoacoustic Refrigerators
,”
Cryogenics
,
42
(
1
),
pp.
49
57
(
57
).10.1016/S0011-2275(01)00179-5
9.
Cornwell
,
P. J.
,
Goethal
,
J.
,
Kowko
,
J.
, and
Damianakis
,
M.
,
2005
, “
Enhancing Power Harvesting Using a Tuned Auxiliary Structure
,”
J. Intell. Mater. Syst. Struct.
,
16
,
pp.
825
834
.10.1177/1045389X05055279
10.
Ma
,
P. S.
,
Kim
,
J. E.
, and
Kim
Y. Y.
,
2010
, “
Power Amplifying Strategy in Vibration Powered Energy Harvesters
,”
Proc. SPIE
,
7643
,
pp.
O-1
O-8
.
11.
Aldraihem
,
O.
, and
Baz
,
A.
,
2011
, “
Energy Harvester With a Dynamic Magnifier
,”
J. Intell. Mater. Syst. Struct.
,
22
(
6
),
pp.
521
530
.10.1177/1045389X11402706
12.
Baz
,
A.
,
1997
, “
Active Noise Control of Piston-Cavity Systems
,”
ASME Winter Annual Meeting., AD-Vol.
54
,
pp.
121
132
.
13.
ANSI/IEEE
,
1987
, “
Standard on Piezoelectricity
,”
ANSI/IEEE STD No. 176-1987
.
14.
Richards
,
C. D.
,
Anderson
,
M. J.
,
Bahr
,
D. F.
, and
Richards
,
R.F.
,
2004
, “
Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component
,”
J. Micromech. Microeng.
,
14
,
pp.
717
721
.10.1088/0960-1317/14/5/009
15.
Ward
,
B.
,
Clark
,
J.
, and
Swift
,
G.
,
2008
, “
Design Environment for Low-Amplitude Thermoacoustic Energy Conversion
,”
Software Users Guide
,
Los Alamos National Laboratory
,
LA-CC-01-13
. (www.lanl.gov/thermoacoustics).
You do not currently have access to this content.