Engineers must routinely predict how structural systems will vibrate after design modifications are made to the mass, damping, or stiffness properties of the components. To reduce the cost of product development, sensitivity prediction methods are desired that can be applied using only empirical data from an initial prototype. Embedded sensitivity functions derived solely from empirical data have previously been applied (a) to identify optimal design modifications for reducing linear vibration resonance problems and (b) to predict the change in frequency response. In this previous work, predictive methods were developed that assumed that only one design parameter in the system was modified. In many applications, it is necessary to extend this approach to all major parameters for a more accurate prediction of the structural dynamic response. This paper utilizes a multivariable Taylor series to take into account multiple parameter changes that affect a broadband frequency range. The method is applied to a single degree of freedom analytical model to determine the accuracy of the predictions. Finite element analyses are then conducted on a three-story structure and an automotive vehicle component with modifications to the stiffness and mass distributions to demonstrate the feasibility of these predictions in applications to more complicated structural systems.

1.
Özgüven
,
H. N.
, 1987, “
A New Method for Harmonic Response of Non-Proportionally Damped Structures Using Undamped Modal Data
,”
J. Sound Vib.
0022-460X,
117
, pp.
313
328
.
2.
Özgüven
,
H. N.
, 1990, “
Structural Modifications Using Frequency Response Functions
,”
Mech. Syst. Signal Process.
0888-3270,
4
(
1
), pp.
53
63
.
3.
Hang
,
H.
,
Shankar
,
K.
, and
Lai
,
J.
, 2008, “
Prediction of the Effects on Dynamic Response Due to Distributed Structural Modification With Additional Degrees of Freedom
,”
Mech. Syst. Signal Process.
0888-3270,
22
, pp.
1809
1825
.
4.
Pomazal
,
R.
, and
Snyder
,
V.
, 1971, “
Local Modifications of Damped Linear Systems
,”
AIAA J.
0001-1452,
9
, pp.
2216
2221
.
5.
Hallquist
,
J.
, 1976, “
An Efficient Method for Determining the Effects of Mass Modifications in Damped Systems
,”
J. Sound Vib.
0022-460X,
44
, pp.
449
459
.
6.
Zimoch
,
Z.
, 1987, “
Sensitivity Analysis of Vibrating Systems
,”
J. Sound Vib.
0022-460X,
115
, pp.
447
458
.
7.
Lee
,
I.
,
Kim
,
D.
, and
Jung
,
G.
, 1999, “
Natural Frequency and Mode Shape Sensitivities of Damped Systems: Part 1, Distinct Natural Frequencies
,”
J. Sound Vib.
0022-460X,
223
, pp.
399
412
.
8.
Park
,
Y. H.
, and
Park
,
Y. S.
, 2000, “
Structure Optimization to Enhance Its Natural Frequencies Based on Measured Frequency Response Functions
,”
J. Sound Vib.
0022-460X,
229
, pp.
1235
1255
.
9.
Park
,
Y. H.
, and
Park
,
Y. S.
, 2000, “
Structural Modification Based on Measured Frequency Response Functions: An Exact Eigenproperties Reallocation
,”
J. Sound Vib.
0022-460X,
237
, pp.
411
426
.
10.
Lips
,
J.
,
Kasper
,
E.
, and
Welsh
,
J.
, 2006, “
Finite Element Methods for the Frequency Response Prediction of Bonded Composites Structures
,”
J. Compos. Mater.
0021-9983,
40
, pp.
1175
1192
.
11.
Dalenbring
,
M.
, 2003, “
Validation of Estimated Isotropic Viscoelastic Material Properties and Vibration Response Prediction
,”
J. Sound Vib.
0022-460X,
265
, pp.
269
287
.
12.
Avitabile
,
P.
, and
Piergentili
,
F.
, 1997, “
Consideration for Effects of Rotational Degrees of Freedom for Hybrid Modeling Applications
,”
Proceedings of the 15th International Modal Analysis Conference
, Orlando, FL.
13.
Mottershead
,
J. E.
,
Kyprianou
,
A.
, and
Ouyang
,
H.
, 2005, “
Structural Modification, Part 1: Rotational Receptances
,”
J. Sound Vib.
0022-460X,
284
(
1–2
), pp.
249
265
.
14.
Mottershead
,
J. E.
,
Tehrani
,
M. G.
,
Stancioiu
,
D.
,
James
,
S.
, and
Shahverdi
,
H.
, 2006, “
Structural Modification of a Helicopter Tailcone
,”
J. Sound Vib.
0022-460X,
298
, pp.
366
384
.
15.
Duncan
,
W.
, 1941, “
The Admittance Method for Obtaining the Natural Frequencies of Systems
,”
Philos. Mag.
1478-6435,
32
, pp.
401
409
.
16.
Bishop
,
R.
, and
Johnson
,
D.
, 1960,
The Mechanics of Vibration
,
Cambridge University Press
,
Cambridge, UK
.
17.
Mottershead
,
J.
, and
Ram
,
Y.
, 2006, “
Inverse Eigenvalue Problems in Vibration Absorption: Passive Modification and Active Control
,”
Mech. Syst. Signal Process.
0888-3270,
20
, pp.
5
44
.
18.
Ram
,
Y.
, and
Braun
,
S.
, 1991, “
An Inverse Problem Associated With Modification of Incomplete Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
233
237
.
19.
Yang
,
C.
, and
Adams
,
D.
, 2009, “
Predicting Changes in Vibration Behavior Using First- and Second-Order Iterative Embedded Sensitivity Functions
,”
J. Sound Vib.
0022-460X,
323
(
1–2
), pp.
173
193
.
20.
Yang
,
C.
,
Adams
,
D.
,
Yoo
,
S.
, and
Kim
,
H.
, 2004, “
An Embedded Sensitivity Approach for Diagnosing System-Level Noise and Vibration Problems
,”
J. Sound Vib.
0022-460X,
269
, pp.
1063
1081
.
21.
Johnson
,
T.
,
Yang
,
C.
,
Adams
,
D.
, and
Ciray
,
S.
, 2005, “
Embedded Sensitivity Functions for Characterizing Structural Damage
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
155
169
.
22.
Yang
,
C.
,
Adams
,
D.
, and
Ciray
,
S.
, 2005, “
System Identification of Nonlinear Mechanical Systems Using Embedded Sensitivity Functions
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
530
541
.
23.
Yang
,
C.
,
Adams
,
D.
,
Derriso
,
M.
, and
Gordon
,
G.
, 2008, “
Structural Damage Identification in a Mechanically Attached Metallic Panel Using Embedded Sensitivity Functions
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
19
, pp.
475
485
.
24.
Adams
,
D. E.
, and
Farrar
,
C. R.
, 2002, “
Classifying Linear and Nonlinear Damage Using Frequency Domain ARX Models
,”
Struct. Health Monit.
1475-9217,
1
(
2
), pp.
185
201
.
You do not currently have access to this content.