Free axisymmetric vibrations of polar orthotropic annular plates of variable thickness resting on a Pasternak-type elastic foundation have been studied based on the classical plate theory. Hamilton’s energy principle has been used to derive the governing differential equation of motion. Frequency equations for an annular plate for two different combinations of edge conditions have been obtained employing Chebyshev collocation technique. Numerical results thus obtained have been presented in the form of tables and graphs. The effect of foundation parameter and thickness variation together with various plate parameters such as rigidity ratio, radius ratio, and taper parameter on natural frequencies has been investigated for the first three modes of vibration. Mode shapes for specified plates have been presented. A close agreement of results with those available in the literature shows the versatility of the present technique.

1.
Leissa
,
A. W.
, 1969, “
Vibration of Plates
,”
NASA
Report No. SP-160.
2.
Leissa
,
A. W.
, 1978, “
Recent Research in Plate Vibrations, 1973–1976: Complicating Effects
,”
Shock Vib. Dig.
0583-1024,
10
(
12
), pp.
21
35
.
3.
Leissa
,
A. W.
, 1987, “
Recent Studies in Plate Vibrations, 1981–1985: Complicating Effects
,”
Shock Vib. Dig.
0583-1024,
19
(
3
), pp.
10
24
.
4.
Bert
,
C. W.
, 1991, “
Research on Dynamic Behavior of Composite and Sandwich Plates, V; Part I
,”
Shock Vib. Dig.
0583-1024,
23
(
6
), pp.
3
14
.
5.
Bert
,
C. W.
, 1991, “
Research on Dynamic Behavior of Composite and Sandwich Plates, V; Part II
,”
Shock Vib. Dig.
0583-1024,
23
(
7
), pp.
9
21
.
6.
Liew
,
K. M.
, 1993, “
Treatments of Over-Restrained Boundaries for Doubly Connected Plates of Arbitrary Shape in Vibration Analysis
,”
Int. J. Solids Struct.
0020-7683,
30
, pp.
337
347
.
7.
Liew
,
K. M.
, 1994, “
Vibration of Clamped Circular Symmetric Laminates
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
141
145
.
8.
Liew
,
K. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
, 1995, “
Research on Thick Plate Vibration: A Literature Survey
,”
J. Sound Vib.
0022-460X,
180
(
1
), pp.
163
176
.
9.
Lal
,
R.
, and
Sharma
,
S.
, 2004, “
Axisymmetric Vibrations of Non-Homogeneous Polar Orthotropic Annular Plates of Variable Thickness
,”
J. Sound Vib.
0022-460X,
272
, pp.
245
265
.
10.
Shiau
,
L. C.
, and
Kuo
,
S. Y.
, 2006, “
Free Vibration of Thermally Buckled Composite Sandwich Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
1
7
.
11.
Varelis
,
D.
, and
Saravanos
,
D. A.
, 2006, “
Small-Amplitude Free-Vibration Analysis of Piezoelectric Composite Plates Subject to Large Deflections and Initial Stresses
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
41
49
.
12.
Sharma
,
S.
, 2006, “
Free Vibration Studies on Non-Homogeneous Circular and Annular Plates
,” Ph.D. thesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
13.
Lal
,
R.
, and
Dhanpati
, 2009, “
Effect of Non-Homogeneity on Vibration of Orthotropic Rectangular Plates of Varying Thickness Resting on Pasternak Foundation
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, pp.
1
9
.
14.
Gupta
,
U. S.
,
Lal
,
R.
, and
Jain
,
S. K.
, 1990, “
Effect of Elastic Foundation on Axisymmetric Vibration of Polar Orthotropic Circular Plates of Variable Thickness
,”
J. Sound Vib.
0022-460X,
139
, pp.
503
513
.
15.
Laura
,
P. A. A.
, and
Gutierrez
,
R. H.
, 1991, “
Free Vibration of a Solid Circular Plate of Linearly Varying Thickness and Attached to a Winkler Type Foundation
,”
J. Sound Vib.
0022-460X,
144
, pp.
161
167
.
16.
Gupta
,
U. S.
,
Lal
,
R.
, and
Jain
,
S. K.
, 1991, “
Buckling and Vibration of Polar Orthotropic Circular Plate of Linearly Varying Thickness Resting on Elastic Foundation
,”
J. Sound Vib.
0022-460X,
147
, pp.
423
434
.
17.
Wang
,
J. L.
, 1992, “
Free Vibration of Stepped Circular Plates on Elastic Foundation
,”
J. Sound Vib.
0022-460X,
159
, pp.
175
181
.
18.
Gupta
,
U. S.
,
Lal
,
R.
, and
Jain
,
S. K.
, 1993, “
Vibration and Buckling of Parabolically Tapered Polar Orthotropic Plates on Elastic Foundation
,”
Indian J. Pure Appl. Math.
0019-5588,
24
, pp.
607
631
.
19.
Liew
,
K. M.
,
Han
,
J. B.
,
Xiao
,
Z. M.
, and
Du
,
H.
, 1996, “
Differential Quadrature Method for Mindlin Plates on Winkler Foundation
,”
Int. J. Mech. Sci.
0020-7403,
38
(
4
), pp.
405
421
.
20.
Gupta
,
U. S.
, and
Ansari
,
A. H.
, 1999, “
Effect of Elastic Foundation on Asymmetric Vibration of Polar Orthotropic Parabolically Tapered Circular Plate
,”
Indian J. Pure Appl. Math.
0019-5588,
30
(
10
), pp.
975
990
.
21.
Gupta
,
U. S.
, and
Ansari
,
A. H.
, 2002, “
Effect of Elastic Foundation on Asymmetric Vibration of Polar Orthotropic Linearly Tapered Circular Plates
,”
J. Sound Vib.
0022-460X,
254
, pp.
411
426
.
22.
Gupta
,
U. S.
,
Ansari
,
A. H.
, and
Sharma
,
S.
, 2006, “
Buckling and Vibration of Polar Orthotropic Circular Plate Resting on Winkler Foundation
,”
J. Sound Vib.
0022-460X,
297
, pp.
457
476
.
23.
Kerr
,
A. D.
, 1964, “
Elastic and Viscoelastic Foundation Models
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
491
498
.
24.
Kamal
,
K.
, and
Durvasula
,
S.
, 1983, “
Bending of Circular Plate on Elastic Foundation
,”
J. Eng. Mech.
0733-9399,
109
, pp.
1293
1298
.
25.
Dumir
,
P. C.
, 1988, “
Large Deflection Axisymmetric Analysis of Orthotropic Annular Plates on Elastic Foundations
,”
Int. J. Solids Struct.
0020-7683,
24
(
8
), pp.
777
787
.
26.
Han
,
J. B.
, and
Liew
,
K. M.
, 1997, “
Numerical Differential Quadrature Method for Reissner/Mindlin plates on Two-Parameter Foundations
,”
Int. J. Mech. Sci.
0020-7403,
39
(
9
), pp.
977
989
.
27.
Rashed
,
Y. F.
,
Aliabadi
,
M. H.
, and
Brebbia
,
C. A.
, 1999, “
A Boundary Element Formulation for a Reissner Plate on a Pasternak Foundation
,”
Comput. Struct.
0045-7949,
70
(
5
), pp.
515
532
.
28.
Wang
,
C. M.
,
Xiang
,
Y.
, and
Wang
,
Q.
, 2001, “
Axisymmetric Buckling of Reddy Circular Plates on Pasternak Foundation
,”
J. Eng. Mech.
0733-9399,
127
(
3
), pp.
254
259
.
29.
Teo
,
T. M.
, and
Liew
,
K. M.
, 2002, “
Differential Cubature Method for Analysis of Shear Deformable Rectangular Plates on Pasternak Foundations
,”
Int. J. Mech. Sci.
0020-7403,
44
(
6
), pp.
1179
1194
.
30.
Güler
,
K.
, 2004, “
Circular Elastic Plate Resting on Tensionless Pasternak Foundation
,”
J. Eng. Mech.
0733-9399,
130
(
10
), pp.
1251
1254
.
31.
Xiang
,
Y.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 1996, “
Buckling and Vibration of Thick Laminates on Pasternak Foundation
,”
J. Eng. Mech.
0733-9399,
122
, pp.
54
63
.
32.
Wang
,
C. M.
,
Wang
,
C.
, and
Ang
,
K. K.
, 1997, “
Vibration of Initially Stressed Reddy Plates on a Winkler-Pasternak Foundation
,”
J. Sound Vib.
0022-460X,
204
(
2
), pp.
203
212
.
33.
Omurtag
,
M. H.
, and
Kadıoglu
,
F.
, 1998, “
Free Vibration Analysis of Orthotropic Plates Resting on Pasternak Foundation by Mixed Finite Element Formulation
,”
Comput. Struct.
0045-7949,
67
(
4
), pp.
253
265
.
34.
Shen
,
H. S.
,
Yang
,
J.
, and
Zhang
,
L.
, 2001, “
Free and Forced Vibration of Reissner-Mindlin Plates With Free Edges Resting on Elastic Foundations
,”
J. Sound Vib.
0022-460X,
244
(
2
), pp.
299
320
.
35.
Malekzadeh
,
P.
, and
Karami
,
G.
, 2004, “
Vibration of Non-Uniform Thick Plates on Elastic Foundation by Differential Quadrature Method
,”
Eng. Struct.
0141-0296,
26
, pp.
1473
1482
.
36.
Zhou
,
D.
,
Lo
,
S. H.
,
Au
,
F. T. K.
, and
Cheung
,
Y. K.
, 2006, “
Three-Dimensional Free Vibration of Thick Circular Plates on Pasternak Foundation
,”
J. Sound Vib.
0022-460X,
292
, pp.
726
741
.
37.
Hashemi
,
Sh. H.
,
Taher
,
H. R. D.
, and
Omidi
,
M.
, 2008, “
3D Free Vibration Analysis of Annular Plates on Pasternak Elastic Foundation via p-Ritz Method
,”
J. Sound Vib.
0022-460X,
311
(
3–5
), pp.
1114
1140
.
38.
Akhavan
,
H.
,
Hashemi
,
Sh. H.
,
Taher
,
H. R. D.
,
Alibeigloo
,
A.
, and
Vahabi
,
Sh.
, 2009, “
Exact Solutions for Rectangular Mindlin Plates Under In-Plane Loads Resting on Pasternak Elastic Foundation. Part I: Buckling Analysis
,”
Comput. Mater. Sci.
0927-0256,
44
(
3
), pp.
968
978
.
39.
Akhavan
,
H.
,
Hashemi
,
Sh. H.
,
Taher
,
H. R. D.
,
Alibeigloo
,
A.
, and
Vahabi
,
Sh.
, 2009, “
Exact Solutions for Rectangular Mindlin Plates Under In-Plane Loads Resting on Pasternak Elastic Foundation. Part II: Frequency Analysis
,”
Comput. Mater. Sci.
0927-0256,
44
(
3
), pp.
951
961
.
40.
Singh
,
B.
,
Hassan
,
S. M.
, and
Lal
,
J.
, 1996, “
Some Numerical Experiments on High Accuracy Fast Direct Finite Difference Methods for Elliptic Problem
,”
Commun. Numer. Methods Eng.
1069-8299,
12
, pp.
631
641
.
41.
Chen
,
D. Y.
, and
Ren
,
B. S.
, 1998, “
Finite Element Analysis of the Lateral Vibration of Thin Annular and Circular Plates With Variable Thickness
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
3
), pp.
747
752
.
42.
Liu
,
C. F.
, and
Lee
,
Y. T.
, 2000, “
Finite Element Analysis of Three Dimensional Vibrations of Thick Circular and Annular Plates
,”
J. Sound Vib.
0022-460X,
233
(
1
), pp.
63
80
.
43.
Lal
,
R.
, 1979, “
Vibrations of Elastic Plates of Variable Thickness
,” Ph.D. thesis, University of Roorkee, Roorkee, Uttarakhand, India.
44.
Avalos
,
D. R.
,
Hack
,
H.
, and
Laura
,
P. A. A.
, 1982, “
Galerkin’s Method and Axisymmetric Vibrations of Polar Orthotropic Circular Plates
,”
AIAA J.
0001-1452,
20
, pp.
1626
1628
.
45.
Ratko
,
M.
, 2005, “
Transverse Vibration and Instability of an Eccentric Rotating Circular Plate
,”
J. Sound Vib.
0022-460X,
280
, pp.
467
478
.
46.
Chakraverty
,
S.
,
Bhat
,
R. B.
, and
Stiharu
,
I.
, 2001, “
Free Vibration of Annular Elliptic Plates Using Boundary Characteristic Orthogonal Polynomials as Shape Functions in the Rayleigh-Ritz Method
,”
J. Sound Vib.
0022-460X,
241
(
3
), pp.
524
539
.
47.
Lal
,
R.
,
Gupta
,
U. S.
and
Reena
, 1997, “
Quintic Splines in the Study of Transverse Vibrations of Non-Uniform Orthotropic Rectangular Plates
,”
J. Sound Vib.
0022-460X,
207
(
1
), pp.
1
13
.
48.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
49.
Verma
,
C. P.
, 1987, “
Some Problems in Vibration of Plates
,” Ph.D. thesis, University of Roorkee, Roorkee, Uttarakhand, India.
50.
Gorman
,
D. G.
, 1982, “
Natural Frequencies of Polar Orthotropic Uniform Annular Plates
,”
J. Sound Vib.
0022-460X,
80
, pp.
145
154
.
You do not currently have access to this content.