The focus of this paper is on the experimental validation of a mathematical model that was developed for the flow of magnetorheological (MR) fluids through the annular gap in a MR damper. Unlike previous work by other researchers, which approximate the flow of the MR fluid through this annulus as a flow of fluid through two infinitely wide parallel plates, the model presented represents accurately the annular flow. In this paper, the mathematical model is validated via experimental testing and analysis of a double-tube MR damper fabricated at the University of Manchester, UK. The experimental setup and the procedures for executing the tests on the MR damper according to established standards for the testing of conventional automotive dampers are given. This involved sets of many isofrequency sinusoidal tests of various displacement amplitudes. Predictions from theoretical simulations based on the mathematical model are validated using the data collected from the experiments. It was found that the modeling procedure represents the MR damper very satisfactorily.

1.
James
,
W. S.
, and
Ullery
,
F. E.
, 1932, “
An Automotive Shock Absorber
,”
SAE Trans.
0096-736X,
30
(
5
), pp.
185
191
.
2.
Kindl
,
C. H.
, 1933, “
New Features in Shock Absorbers With Inertia Control
,”
SAE J.
0036-066X,
32
(
5
), pp.
172
176
.
3.
Schilling
,
R.
, and
Fuchs
,
H. O.
, 1941, “
Modern Passenger-Car Ride Characteristics
,”
Trans. ASME
0097-6822,
63
, pp.
A59
A66
.
4.
Hoffmann
,
H. J.
, 1957, “
Theoretical and Practical Investigation of the Effectiveness of Shock Absorbers on Vehicles
,” Dr.-Ing. thesis, Techische, Hochachula Carolo-Wilhelmine ru Braunschweig, Germany.
5.
Cafferty
,
S.
, 1996, “
Characterisation of Automotive Shock Absorbers Using Time and Frequency Domain Techniques
,” Ph.D. thesis, Victoria University of Manchester, Manchester, UK.
6.
Cafferty
,
S.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
, 1995, “
Characterization of Automotive Shock Absorbers Using Random Excitation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
209
, pp.
239
248
.
7.
Worden
,
K.
, and
Tomlinson
,
G. R.
, 1992, “
Parametric and Nonparametric Identification of Automobile Shock Absorbers
,”
Proceedings of the Tenth International Modal Analysis Conference
, San Diego, pp.
764
771
.
8.
Chooi
,
W. W.
, and
Oyadiji
,
S. O.
, 2004, “
Non-Parametric Identification of MR Dampers
,”
Ninth International Conference on Electrorheological (ER) Fluids and Magnetorheological (MR) Suspensions
, Beijing, China, Aug. 29–Sept. 3.
9.
Ericksen
,
E. O.
, and
Gordaninejad
,
F.
, 2000, “
A Magneto-Rheological Fluid Shock Absorber for Suspension of an Off-Road Motorcycle: A Theoretical Study
,”
Proc. SPIE
0277-786X,
3991
, pp.
273
282
.
10.
Kelso
,
S. P.
, 2001, “
Experimental Characterization of Commercially Practical Magnetorheological Fluid Damper Technology
,”
Proceedings of SPIE Conference on Smart Structures and Materials
, Paper No. 4332-34.
11.
Sunakoda
,
K.
,
Sodeyama
,
H.
,
Iwata
,
N.
,
Fujitani
,
H.
, and
Soda
,
S.
, 2000, “
Dynamics Characteristics of Magneto-Rheological Fluid Damper
,”
Proc. SPIE
0277-786X,
3989
, pp.
194
203
.
12.
Wereley
,
N. M.
,
Pang
,
L.
, and
Kamath
,
G. M.
, 1998, “
Idealized Hysteresis Modelling of Electrorheological and Magnetorheological Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
, pp.
642
649
.
13.
Lindler
,
J. E.
,
Dimock
,
G. A.
, and
Wereley
,
N. M.
, 2000, “
Design of a Magnetorheological Automotive Shock Absorber
,”
Proc. SPIE
0277-786X,
3985
, pp.
426
437
.
14.
Kelso
,
S. P.
, and
Gordaninejad
,
F.
, 1999, “
Magneto-Rheological Fluid Shock Absorber for Off-Highway, High-Payload Vehicles
,”
Proc. SPIE
0277-786X,
3672
, pp.
44
54
.
15.
Yao
,
G. Z.
,
Yap
,
F. F.
,
Chen
,
G.
,
Li
,
W. H.
, and
Yeo
,
S. H.
, 2002, “
MR Damper and its Application for Semi-Active Control of Vehicle Suspension System
,”
Mechatronics
0957-4158,
12
, pp.
963
973
.
16.
Liao
,
W. H.
, and
Lai
,
C. Y.
, 2002, “
Harmonic Analysis of a Magnetorheological Damper for Vibration Control
,”
Smart Mater. Struct.
0964-1726,
11
, pp.
288
296
.
17.
Snyder
,
R. A.
,
Kamath
,
G. M.
, and
Wereley
,
N. M.
, 2001, “
Characterization and Analysis of Magnetorheological Damper Behavior Under Sinusoidal Loading
,”
AIAA J.
0001-1452,
39
(
7
), pp.
1240
1253
.
18.
Chooi
,
W. W.
, and
Oyadiji
,
S. O.
, 2009, “
Mathematical Modeling, Analysis, and Design of Magnetorheological (MR) Dampers
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
061002
.
19.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
, 1999,
Non-Newtonian Flow in the Process Industries—Fundamentals and Engineering Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
You do not currently have access to this content.