The analysis of multidegree-of-freedom (MDOF) nonlinear systems is studied using the concept of nonlinear output frequency response functions (NOFRFs), which are a series of one-dimensional functions of frequency recently proposed by the authors to facilitate the analysis of nonlinear systems in the frequency domain. By inspecting the relationships between the NOFRFs of two consecutive masses in the locally nonlinear MDOF systems, a series of properties about the NOFRFs of the nonlinear systems are obtained. These properties clearly reveal how the system linear characteristic parameters govern the distribution of nonlinear effects induced by the system nonlinear component within the whole systems. The results obtained in the present work are of significance to the frequency response analysis for nonlinear systems. One important potential application of these results is the detection and location of damages in engineering structures, which make the structures behave nonlinearly.

1.
Pearson
,
R. K.
, 1994,
Discrete Time Dynamic Models
,
Oxford University Press
,
New York
.
2.
Worden
,
K.
,
Manson
,
G.
, and
Tomlinson
,
G. R.
, 1997, “
A Harmonic Probing Algorithm for the Multi-Input Volterra Series
,”
J. Sound Vib.
0022-460X,
201
, pp.
67
84
.
3.
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 1996, “
Output Frequency Characteristics of Nonlinear System
,”
Int. J. Control
0020-7179,
64
, pp.
1049
1067
.
4.
Billings
,
S. A.
, and
Tsang
,
K. M.
, 1989, “
Spectral Analysis for Nonlinear System, Part I: Parametric Non-Linear Spectral Analysis
,”
Mech. Syst. Signal Process.
0888-3270,
3
, pp.
319
339
.
5.
Billings
,
S. A.
, and
Peyton Jones
,
J. C.
, 1990, “
Mapping Nonlinear Integro-Differential Equations Into the Frequency Domain
,”
Int. J. Control
0020-7179,
52
, pp.
863
879
.
6.
Peyton Jones
,
J. C.
, and
Billings
,
S. A.
, 1989, “
Recursive Algorithm for Computing the Frequency Response of a Class of Nonlinear Difference Equation Models
,”
Int. J. Control
0020-7179,
50
, pp.
1925
1940
.
7.
Vazquez Feijoo
,
J. A.
,
Worden
,
K.
, and
Stanway
,
R.
, 2005, “
Associated Linear Equations for Volterra Operators
,”
Mech. Syst. Signal Process.
0888-3270,
19
, pp.
57
69
.
8.
Vazquez Feijoo
,
J. A.
,
Worden
,
K.
, and
Stanway
,
R.
, 2004, “
System Identification Using Associated Linear Equations
,”
Mech. Syst. Signal Process.
0888-3270,
18
, pp.
431
455
.
9.
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 2005, “
Energy Transfer Properties of Non-Linear Systems in the Frequency Domain
,”
Int. J. Control
0020-7179,
78
, pp.
345
362
.
10.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
, 2001, “
Vibration of a Beam With Breathing Crack
,”
J. Sound Vib.
0022-460X,
239
, pp.
57
67
.
11.
He
,
J.
, and
Fu
,
Z.
, 2001,
Modal Analysis
,
Butterworth-Heinemann
,
Oxford
.
12.
Peng
,
Z. K.
,
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 2007, “
Resonances and Resonant Frequencies for a Class of Nonlinear Systems
,”
J. Sound Vib.
0022-460X,
300
, pp.
993
1014
.
13.
Worden
,
K.
, 1997, “
Structural Fault Detection Using a Novelty Measure
,”
J. Sound Vib.
0022-460X,
201
, pp.
85
101
.
14.
Chen
,
Q.
,
Chan
,
Y. W.
, and
Worden
,
K.
, 2003, “
Structural Fault Diagnosis and Isolation Using Neural Networks Based on Response-Only Data
,”
Comput. Struct.
0045-7949,
81
, pp.
2165
2172
.
15.
Dimarogonas
,
A. D.
, 1996, “
Vibration of Cracked Structures: A State of the Art Review
,”
Eng. Fract. Mech.
0013-7944,
55
, pp.
831
857
.
16.
Alippi
,
A.
,
Bettucci
,
A.
,
Germano
,
M.
, and
Passeri
,
D.
, 2006, “
Harmonic and Subharmonic Acoustic Wave Generation in Finite Structures
,”
Ultrasonics
0041-624X,
44
, pp.
e1313
e1318
.
You do not currently have access to this content.