In this paper, an analytical solution is derived and used for studying the effect of off-neutral axis loading (point force excitation applied off the neutral axis of a rib) on ribbed-plate responses. Effects of off-neutral axis loading on ribbed-plate responses, in terms of input power and kinetic energy distribution in the component plates, are found to be significant except at frequencies where the beam flexural impedance is small (near the natural frequencies of the uncoupled beam). The negative input power component due to the point force or moment excitation is observed and explained in this analysis. Energy flow from the beam to the plates is dominated by the shear force coupling at the beam/plate interface if the force excitation is applied on the neutral axis of the beam. As the point force excitation location shifts away from the neutral axis, the beam is excited by a force and a moment. These dual excitations involve both shear force and moment couplings at the interface. Thus, changes in the energy flow into the component plates are dependent on the relative phase between the individual induced responses by the point force and moment excitations. This paper also discusses changes in the kinetic energy of the component plates due to changes in the energy flow.

1.
Lamb
,
G. L.
, 1961, “
Input Impedance of a Beam Coupled to a Plate
,”
J. Acoust. Soc. Am.
0001-4966,
33
(
5
), pp.
628
633
.
2.
Kovinskaya
,
S. I.
, and
Nikiforov
,
A. S.
, 1973, “
Flexural Wave Fields in Infinite Beam-Reinforced Plates Under Point Excitation
,”
Sov. Phys. Acoust.
0038-562X,
19
(
1
), pp.
32
35
.
3.
Mace
,
B. R.
, 1980, “
Periodically Stiffened Fluid Loaded Plates, II: Response to Line and Point Forces
,”
J. Sound Vib.
0022-460X,
73
(
4
), pp.
487
504
.
4.
Ungar
,
E. E.
, 1961, “
Transmission of Plate Flexural Waves Through Reinforcing Beams: Dynamic Stress Concentration
,”
J. Acoust. Soc. Am.
0001-4966,
33
(
5
), pp.
633
639
.
5.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E. E.
, 1988,
Structure-Borne Sound
, 2nd ed.,
Springer-Verlag
,
Berlin
, p.
446
.
6.
Kessissoglou
,
N. J.
, and
Pan
,
J.
, 1997, “
An Analytical Investigation on Active Attenuation of the Plate Flexural Wave Transmission Through a Reinforced Beam
,”
J. Acoust. Soc. Am.
0001-4966,
102
(
6
), pp.
3530
3541
.
7.
Kessissoglou
,
N. J.
, and
Pan
,
J.
, 1998, “
Active Structural Acoustic Control of an Infinite Ribbed Plate Under Light Fluid Loading
,”
J. Acoust. Soc. Am.
0001-4966,
104
(
6
), pp.
3398
3407
.
8.
Maidanik
,
G.
, 1962, “
Response of Ribbed Panels to Reverberant Acoustic Fields
,”
J. Acoust. Soc. Am.
0001-4966,
34
(
6
), pp.
809
826
.
9.
Mead
,
D. J.
, 1990, “
Plates With Regular Stiffening in Acoustic Media: Vibration and Radiation
,”
J. Acoust. Soc. Am.
0001-4966,
88
(
1
), pp.
391
401
.
10.
Maidanik
,
G.
, and
Dickey
,
J.
, 1991, “
Velocity Distributions on Unloaded Finitely and Regularly Rribbed Membranes
,”
J. Sound Vib.
0022-460X,
149
(
1
), pp.
43
70
.
11.
Ji
,
L.
,
Mace
,
B. R.
, and
Pinnington
,
R. J.
, 2004, “
A Hybrid Mode/Fourier-Transform Approach for Estimating the Vibrations of Beam-Stiffened Plate Systems
,”
J. Sound Vib.
,
274
(
3-5
), pp.
547
565
. 0022-460X
12.
Romanov
,
V. N.
, 1971, “
Radiation of Sound by an Infinite Plate With Reinforced Beams
,”
Sov. Phys. Acoust.
0038-562X,
17
(
1
), pp.
92
96
.
13.
Lin
,
G. F.
, and
Hayek
,
S. I.
, 1977, “
Acoustic Radiation From Point Excited Rib-Reinforced Plate
,”
J. Acoust. Soc. Am.
0001-4966,
62
(
1
), pp.
72
83
.
14.
Wu
,
J. R.
, and
Liu
,
W. H.
, 1988, “
Vibration of Rectangular Plates With Edge Restraints and Intermediate Stiffeners
,”
J. Sound Vib.
0022-460X,
123
(
1
), pp.
103
113
.
15.
Wah
,
T.
, 1964, “
Vibration of Stiffened Plates
,”
Aeronaut. Q.
0001-9259,
15
, pp.
185
198
.
16.
Mercer
,
C. A.
, and
Seavey
,
M. C.
, 1967, “
Prediction of Natural Frequencies and Normal Modes of Skin-Stringer Panel Rows
,”
J. Sound Vib.
0022-460X,
6
(
1
), pp.
149
162
.
17.
Long
,
B. R.
, 1971, “
A Stiffness-Type Analysis of the Vibration of a Class of Stiffened Plates
,”
J. Sound Vib.
0022-460X,
16
(
3
), pp.
323
335
.
18.
Zeng
,
H.
, and
Bert
,
C. W.
, 2001, “
A Differential Quadrature Analysis of Vibration for Rectangular Stiffened Plates
,”
J. Sound Vib.
0022-460X,
241
(
2
), pp.
247
252
.
19.
Langley
,
R. S.
, 1989, “
Application of the Dynamic Stiffness Method to the Free and Forced Vibrations of Aircraft Panels
,”
J. Sound Vib.
0022-460X,
135
(
2
), pp.
319
339
.
20.
Grice
,
R. M.
, and
Pinnington
,
R. J.
, 2000, “
A Method for the Vibration Analysis of Built-Up Structures, Part I: Introduction and Analytical Analysis of the Plate Stiffened Beam
,”
J. Sound Vib.
0022-460X,
230
(
4
), pp.
825
849
.
21.
Lin
,
T. R.
, and
Pan
,
J.
, 2006, “
A Closed Form Solution for the Dynamic Response of Finite Ribbed Plates
,”
J. Acoust. Soc. Am.
0001-4966,
119
(
2
), pp.
917
925
.
22.
Steward
,
G. W.
, 1973,
Introduction to Matrix Computation
,
Academic
,
New York, London
, p.
72
.
23.
Smith
,
W. W.
, Jr.
, and
Erdman
,
S.
, 1974, “
A Note on the Inversion of Complex Matrix
,”
IEEE Trans. Autom. Control
,
19
(
1
), pp.
64
. 0018-9286
24.
Graham
,
A.
, 1979,
Matrix Theory and Applications for Engineers and Mathematician
,
Ellis Horwood Limited
,
Chichester
, p.
255
.
You do not currently have access to this content.