It has been known that it is difficult to establish a fuzzy logic model with effective fuzzy rules and the associated membership functions. Neural network with its learning capability has been incorporated to make the fuzzy model more adaptive and effective. A self-organized neuro-fuzzy model by integrating the Mamdani fuzzy model and the backpropagation neural network is developed in this paper for system identification. The five-layer network adaptively adjusts the membership functions and dynamically optimizes the fuzzy rules. A benchmark test is applied to validate the model accuracy in nonlinear system identification. Experimental verifications on the dynamics of a composite smart structure and on an acoustics system also demonstrate that the neuro-fuzzy model is superior to the neural network and to an adaptive filter in system identification. The model can be established systematically and is shown to be effective in engineering applications.

1.
Castro
,
J. L.
, and
Delgado
,
M.
, 1996, “
Fuzzy Systems with Defuzzification are Universal Approximators
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
26
(
1
), pp.
149
152
.
2.
Wang
,
L.
, and
Langari
,
R.
, 1996, “
Complex Systems Modeling via Fuzzy Logic
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
26
(
1
), pp.
100
106
.
3.
Yang
,
C.
,
Adams
,
D. E.
, and
Ciray
,
S.
, 2005, “
System Identification of Nonlinear Mechanical Systems Using Embedded Sensitivity Functions
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
6
), pp.
530
541
.
4.
Iemma
,
U.
,
Diez
,
M.
, and
Morino
,
L.
, 2006, “
An Extended Karhunen-Loève Decomposition for Modal Identification of Inhomogeneous Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
3
), pp.
357
365
.
5.
Lin
,
C. T.
, and
Lee
,
C. S. G.
, 1996,
Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems
,
Prentice-Hall PTR
.
6.
Figueiredo
,
M.
, and
Gomide
,
F.
, 1999, “
Design of Fuzzy Systems Using Neurofuzzy Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
10
(
4
), pp.
815
827
.
7.
Shi
,
Y.
, and
Mizumoto
,
M.
, 2000, “
A New Approach of Neuro-Fuzzy Algorithm for Tuning Fuzzy Rules
,”
Fuzzy Sets Syst.
0165-0114,
112
(
1
), pp.
99
116
.
8.
Farag
,
W. A.
,
Quintana
,
V. H.
, and
Lambert-Torres
,
G.
, 1998, “
A Genetic-Based Neuro-Fuzzy Approach for Modeling and Control of Dynamical Systems
,”
IEEE Trans. Neural Netw.
1045-9227,
9
(
5
), pp.
756
767
.
9.
Barada
,
S.
, and
Singh
,
H.
, 1998, “
Generating Optimal Adaptive Fuzzy-Neural Models of Dynamical Systems with Applications to Control
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
28
(
3
), pp.
371
391
.
10.
Geisler
,
J. P.
,
Lee
,
C. S. G.
, and
May
,
G. S.
, 2000, “
Neurofuzzy Modeling of Chemical Vapor Deposition Process
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
13
(
1
), pp.
46
60
.
11.
Zhang
,
Y. Q.
, and
Kandel
,
A.
, 1998, “
Compensatory Neurofuzzy Systems with Fast Learning Algorithms
,”
IEEE Trans. Neural Netw.
1045-9227,
9
(
1
), pp.
83
105
.
12.
Pal
,
N. R.
, and
Pal
,
T.
, 1999, “
On Rule Pruning Using Fuzzy Neural Networks
,”
Fuzzy Sets Syst.
0165-0114,
106
(
3
), pp.
335
347
.
13.
Shann
,
J. J.
, and
Fu
,
H. C.
, 1995, “
A Fuzzy Neural Network for Rule Acquiring on Fuzzy Control System
,”
Fuzzy Sets Syst.
0165-0114,
71
(
3
), pp.
345
357
.
14.
Mitra
,
S.
, and
Hayashi
,
R.
, 2000, “
Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework
,”
IEEE Trans. Neural Netw.
1045-9227,
11
(
3
), pp.
748
768
.
15.
Kukolj
,
D.
, and
Levi
,
E.
, 2004, “
Identification of Complex Systems Based on Neural and Takagi-Sugeno Fuzzy Model
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
34
(
1
), pp.
272
282
.
16.
Rong
,
H.
,
Sundararajan
,
N.
,
Huang
,
G.
, and
Saratchandran
,
2006, “
Sequential Adaptive Fuzzy Inference System (SAFIS) for Nonlinear System Identification and Prediction
,”
Fuzzy Sets Syst.
0165-0114,
150
, pp.
1260
1275
.
17.
Leng
,
G..
,
McGinnity
,
T. M.
, and
Prasad
,
G.
, 2005, “
An Approach for On-line Extraction of Fuzzy Rules using a Self-Organizing Fuzzy Neural Network
,”
Fuzzy Sets Syst.
0165-0114,
150
, pp.
211
243
.
18.
Angelov
,
P. P.
, and
Filev
,
D. P.
, 2004, “
An Approach to Online Identification of Takagi-Sugeno Fuzzy Models
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
34
, pp.
484
498
.
19.
Juang
,
C.
, and
Lin
,
C.
, 1998, “
An On-line Self-Constructing Neural Fuzzy Inference Network and Its Applications
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
6
, pp.
12
32
.
20.
Kasabov
,
N.
, and
Song
,
Q.
, 2002, “
DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and Its Application for Time-Series Prediction
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
10
, pp.
144
154
.
21.
Kasabov
,
N.
, 2001, “
Evolving Fuzzy Neural Network for Supervised/Unsupervised Online Knowledge-Based Learning
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
31
, pp.
902
918
.
22.
Lin
,
F.
,
Lin
,
C.
, and
Shen
,
P.
, 2001, “
Self-Constructing Fuzzy Neural Network Speed Controller for Permanent-Magnet Synchronous Motor Drive
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
9
, pp.
751
759
.
23.
Jang
,
J. S. R.
, 1993, “
ANFIS: Adaptive Network-based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
, pp.
665
684
.
24.
Kohonen
,
T.
, 1988,
Self-Organization and Associate Memory
,
Springer-Verlag
Berlin.
25.
Narendra
,
K. S.
, and
Parthasarathy
,
K.
, 1990, “
Identification and Control of Dynamical Systems Using Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
1
(
1
), pp.
4
27
.
26.
Yang
,
S. M.
, and
Lee
,
G. S.
, 1997, “
Vibration Control of Smart Structures by Using Neural Networks
,”
J. Dyn. Syst., Meas., Control
0022-0434,
119
(
1
), pp.
34
39
.
27.
Yang
,
S. M.
, and
Lee
,
G. S.
, 1998, “
System Identification of Smart Structures Using Neural Networks
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
10
), pp.
883
890
.
28.
Yang
,
S. M.
,
Sheu
,
G. J.
, and
Liu
,
K. C.
, 2005, “
Vibration Control of Composite Smart Structures by Feedforward Adaptive Filter in Digital Signal Processor
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
9
), pp.
773
779
.
You do not currently have access to this content.