Inaccuracies in the modeling assumptions about the distributional characteristics of the monitored signatures have been shown to cause frequent false positives in vehicle monitoring systems for high-risk aerospace applications. To enable the development of robust fault detection methods, this work explores the deterministic as well as variational characteristics of failure signatures. Specifically, we explore the combined impact of crack damage and manufacturing variation on the vibrational characteristics of turbine blades modeled as pinned-pinned beams. The changes in the transverse vibration and associated eigenfrequencies of the beams are considered. Specifically, a complete variational beam vibration model is developed and presented that allows variations in geometry and material properties to be considered, with and without crack damage. To simplify variational simulation, separation of variables is used for fast simulations. This formulation is presented in detail. To establish a baseline of the effect of geometric variations on the system vibrational response, a complete numerical example is presented that includes damaged beams of ideal geometry and damaged beams with geometric variation. It is shown that changes in fault detection monitoring signals caused by geometric variation are small with those caused by damage and impending failure. Also, when combined, the impact of geometric variation and damage appear to be independent.

1.
Oza
,
N.
,
Tumer
,
I.
,
Tumer
,
K.
, and
Huff
,
E.
, 2003, “
Classification of Aircraft Maneuvers for Fault Detection
,”
Proceedings of the Multiple Classifier Systems (MCS) Workshop
.
2.
Tumer
,
I.
, and
Huff
,
E.
, 2002, “
On the Effects of Production and Maintenance Variations on Machinery Performance
,”
J. Qual. Maint. Eng.
1355-2511,
8
(
3
), pp.
226
238
.
3.
Tumer
,
I.
, and
Huff
,
E.
, 2002, “
Analysis of Triaxial Vibration Data for Health Monitoring of Helicopter Gearboxes
,”
J. Vibr. Acoust.
0739-3717,
125
(
1
), pp.
120
128
.
4.
Huff
,
E.
,
Tumer
,
I.
,
Barszcz
,
E.
,
Dzwonczyk
,
M.
, and
McNames
,
J.
, 2002, “
Analysis of Maneuvering Effects on Transmission Vibrations in an AH-1 Cobra Helicopter
,”
J. Am. Helicopter Soc.
0002-8711,
47
(
1
), pp.
42
49
.
5.
Tumer
,
I.
, and
Huff
,
E.
, 2002, “
Principal Components Analysis of Triaxial Vibration Data from Helicopter Transmissions
,”
56th Meeting of the Society for Machinery Failure Prevention Technology
.
6.
McAdams
,
D.
, and
Tumer
,
I.
, 2002, “
Towards Failure Modeling in Complex Dynamic Systems: Impact of Design and Manufacturing Variations
,”
ASME Design for Manufacturing Conference
, vol.
DETC2002/DFM–34161
.
7.
Lifson
,
A.
,
Quentin
,
G.
,
Smalley
,
A.
, and
Knauf
,
C.
, 1989, “
Assessment of Gas Turbine Vibration Monitoring
,”
J. Eng. Gas Turbines Power
0742-4795,
111
(
2
), pp.
257
263
.
8.
Simani
,
S.
,
Patton
,
R. J.
,
Daley
,
S.
, and
Pike
,
A.
, 2000, “
Identification and Fault Diagnosis of an Industrial Gas Turbine Prototype Model
,”
Proceedings of the IEEE Conference on Decision and Control
, vol.
3
, pp.
2615
2620
.
9.
Simani
,
S.
,
Fantuzzi
,
C.
, and
Spina
,
P. R.
, 1998, “
Application of Neural Network in Gas Turbine Control Sensor Fault Detection
,”
IEEE Conference on Control Applications - Proceedings
, vol.
1
,
IEEE
, New York, pp.
182
186
.
10.
Diao
,
Y.
, and
Passino
,
K.
, 2000, “
Fault Diagnosis for a Turbine Engine
,”
Proceedings of the American Control Conference
, vol.
4
,
IEEE
, New York, pp.
2393
2397
.
11.
Sutherland
,
H. J.
,
Veers
,
P. S.
, and
Ashwill
,
T. D.
, 1994, “
Fatigue Life Prediction for Wind Turbines: A Case Study on Loading Spectra and Parameter Sensitivity
,”
ASTM Special Publication
, pp.
174
207
.
12.
Panovsky
,
J.
, and
Carson
,
S. M.
, 1998, “
Prediction of Turbine Blade Vibratory Response Due to Upstream Vane Distress
,”
J. Turbomach.
0889-504X,
120
(
3
), pp.
515
521
.
13.
Hampton
,
R.
, and
Nelson
,
H. G.
, 1986, “
Failure Analysis of a Large Wind Compressor Blade
,”
ASTM Spec. Tech. Publ.
0066-0558,
918
, pp.
153
180
.
14.
Aretakis
,
N.
, and
Mathioudakis
,
K.
, 1997, “
Wavelet Analysis for Gas Turbine Fault Diagnostics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
4
), pp.
870
876
.
15.
American Society of Mechanical Engineers
, 1990, “
Vibration Analysis of Cracked Turbine and Compressor Blades
,”
International Gas Turbine and Aeroengine Congress and Exposition
.
16.
Sekhar
,
A. S.
, 2000, “
Vibration Characteristics of a Cracked Rotor with Two Open Cracks
,”
J. Sound Vib.
0022-460X,
32
(
1
), pp.
497
512
17.
Wu
,
M.-C.
, and
Huang
,
S.-C.
, 1998, “
On the Vibration of a Cracked Rotating Blade
,”
Shock Vib.
1070-9622
5
(
5-6
), pp.
317
323
.
18.
Ganesan
,
R.
,
Ramu
,
S.
, and
Sankar
,
T.
, 1993, “
Stochastic Finite Element Analysis for High Speed Rotors
,”
J. Vibr. Acoust.
0739-3717,
115
(
3
), pp.
59
64
.
19.
Hu
,
J.
, and
Liang
,
Y.
, 1993, “
An Integrated Approach to Detection of Cracks Using Vibration Characteristics
,”
J. Franklin Inst.
0016-0032,
330
(
5
), pp.
841
853
.
20.
Gudmundon
,
P.
, 1982, “
Eigenfrequency Changes of Structures Due to Cracks, Notches or Other Geometrical Changes
,”
J. Mech. Phys. Solids
0022-5096,
30
(
5
), pp.
339
353
.
21.
Wetland
,
D.
, 1972, “
Aenderung der Biegeeigenfrequenzen Einer Idealisierten Schaufel Durch Risse
,” Ph.D. thesis, University of Karlsruhe.
22.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
, 1998, “
A Continuous Cracked Beam Vibration Theory
,”
J. Sound Vib.
0022-460X,
215
(
1
), pp.
17
34
.
23.
Chondros
,
T. G.
, and
Dimarogonas
,
A. D.
, 1998, “
Vibration of a Cracked Cantilever Beam
,”
J. Vibr. Acoust.
0739-3717,
120
(
2
), pp.
742
746
.
24.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
, 1998, “
Longitudinal Vibration of a Continuous Cracked Bar
,”
Eng. Fract. Mech.
0013-7944,
61
(
5-6
), pp.
593
606
.
25.
Chondros
,
T. G.
, 2001, “
The Continuous Crack Flexibility Model for Crack Identification
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
24
(
10
), pp.
643
650
.
26.
Mengcheng
,
C.
, and
Renji
,
T.
, 1997, “
An Approximate Method of Response Analysis of Vibrations for Cracked Beams
,”
Appl. Math. Mech.
0253-4827,
18
(
3
), pp.
221
228
.
27.
Yokoyama
,
T.
, and
Chen
,
M.-C.
, 1998, “
Vibration Analysis of Edge-Cracked Beams Using a Line-Spring Model
,”
Eng. Fract. Mech.
0013-7944,
59
(
3
), pp.
403
409
.
28.
Chaudhari
,
T. D.
, and
Maiti
,
S. K.
, 1999, “
Modelling of Transverse Vibration of Beam of Linearly Variable Depth with Edge Crack
,”
Eng. Fract. Mech.
0013-7944,
63
(
4
), pp.
425
445
.
29.
Ju
,
F. D.
, and
Mimovich
,
M. E.
, 1988, “
Experimental Diagnosis of Fracture Damage in Structures by the Modal Frequency Method
,”
J. Vibr. Acoust.
0739-3717,
110
(
4
), pp.
456
463
.
30.
Inman
,
D.
, 1976,
Engineering Vibration
,
Prentice-Hall
, Engelwood Cliffs, NJ.
31.
Chaudhari
,
T. D.
, and
Maiti
,
S. K.
, 1999, “
Modelling of Transverse Vibration of Beam of Linearly Variable Depth with Edge Crack
,”
Eng. Fract. Mech.
0013-7944,
63
(
4
), pp.
425
445
.
32.
Keller
,
H. B.
, 1976,
Numerical Solution of Two Point Boundary Value Problems
,
Society for Industrial and Applied Mathematics
, Philadelphia, Pennsylvania.
You do not currently have access to this content.