An interative method has been developed for analyzing dynamic loads in a light weight basic planetary gear system. The effects of fixed, semi-floating, and fully-floating sun gear conditions have been emphasized. The load dependent variable gear mesh stiffnesses were incorporated into a practical torsional dynamic model of a planetary gear system. The dynamic model consists of input and output units, shafts, and a planetary train. In this model, the sun gear has three degrees of freedom; two transverse and one rotational. The planets, ring gear, and the input and output units have one degree of freedom, (rotation) thus giving a total of nine degrees of freedoms for the basic system. The ring gear has a continuous radial support. The results indicate that the fixed sun gear arrangement with accurate or errorless gearing offers in general better performance than the floating sun gear system.

This content is only available via PDF.
You do not currently have access to this content.