Abstract

This study proposes a theoretical model and assessment method for the resilience of high consequence system (HCS), addressing the risk assessment and decision-making needs in critical system engineering activities. By analyzing various resilience theories in different domains and considering the characteristics of risk decision-making for HCS, a comprehensive theoretical model for the resilience of HCS is developed. This model considers the operational capability under normal environment (consisting of reliability and maintainability) and the safety capability under abnormal environment (consisting of resistance and emergence response ability). A case study is conducted on a spent fuel transportation packaging system, where the sealing performance after sealing ring aging is regarded as the reliability of the system and calculated using reliability methods, and impact resistance after impact is regard as resistance the impact safety of the packaging system is assessed using finite element analysis and surrogate modeling methods. The surrogate model fits the deformation output results of finite elements. Maintainability and emergency response ability are also essential elements of the resilience model for HCS facing exceptional events. The resilience variation of the spent fuel transportation packaging system is computed under the uncertainty of yielding stress of buffer material. The resilience of the packaging system is evaluated for different buffer thicknesses. The system's resilience decreases with higher uncertainty in the yielding stress of the buffer material, while it increases with thicker buffer materials. The improvement of emergency rescue ability will also lead to the improvement of system resilience.

References

1.
Guo
,
L.-L.
,
Luo
,
J.-R.
, and
Xie
,
C.-Y.
,
2007
, “
Research on the Conception and Connotation of Suerty
,”
China Saf. Sci. J.
,
17
(
11
), pp.
21
25
.
2.
Winter
,
W. L.
,
Covan
,
J. M.
, and
Dalton
,
L. J.
,
1998
, “
Passive Safety in High-Consequence Systems
,”
Computer
,
31
(
4
), pp.
35
47
.10.1109/2.666841
3.
Jeong
,
J.
,
Cho
,
D. K.
,
Choi
,
H. J.
, and
Choi
,
J. W.
,
2011
, “
Comparison of the Transportation Risks for the Spent Fuel in Korea for Different Transportation Scenarios
,”
Ann. Nucl. Energy
,
38
(
2–3
), pp.
535
539
.10.1016/j.anucene.2010.09.030
4.
Jeong
,
J.
,
Baik
,
M. H.
,
Kang
,
M. J.
,
Ahn
,
H.-J.
,
Hwang
,
D.-S.
,
Hong
,
D. S.
,
Jeong
,
Y.-H.
, and
Kim
,
K.
,
2016
, “
Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea
,”
Nucl. Eng. Technol.
,
48
(
6
), pp.
1368
1375
.10.1016/j.net.2016.05.003
5.
Yun
,
M.
,
Christian
,
R.
,
Kim
,
B. G.
,
Almomani
,
B.
,
Ham
,
J.
,
Lee
,
S.
, and
Kang
,
H. G.
,
2017
, “
A Software Tool for Integrated Risk Assessment of Spent Fuel Transportation and Storage
,”
Nucl. Eng. Technol.
,
49
(
4
), pp.
721
733
.10.1016/j.net.2017.01.017
6.
Li
,
Z.
,
Chen
,
C.
,
Yu
,
S.
,
Wu
,
B.
,
Hao
,
L.
,
Wang
,
J.
, and
Wu
,
Y.
,
2019
, “
Safety Evaluation of Spent Fuel Road Transportation Based on Weighted Nearest Neighbor Method
,”
Ann. Nucl. Energy
,
127
, pp.
412
418
.10.1016/j.anucene.2018.12.036
7.
Christian
,
R.
, and
Kang
,
H. G.
,
2017
, “
Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation—Part I: Transport Cask Damage Probability
,”
Reliab. Eng. Syst. Saf.
,
164
, pp.
124
135
.10.1016/j.ress.2016.11.021
8.
Christian
,
R.
, and
Kang
,
H. G.
,
2017
, “
Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation (Part II: Ship Collision Probability)
,”
Reliab. Eng. Syst. Saf.
,
164
, pp.
136
149
.10.1016/j.ress.2016.11.017
9.
Todini
,
E.
,
2000
, “
Looped Water Distribution Networks Design Using a Resilience Index Based Heuristic Approach
,”
Urban Water
,
2
(
2
), pp.
115
122
.10.1016/S1462-0758(00)00049-2
10.
Tan
,
Z.
,
Wu
,
B.
, and
Che
,
A.
,
2023
, “
Resilience Modeling for Multi-State Systems Based on Markov Processes
,”
Reliab. Eng. Syst. Saf.
,
235
, p.
109207
.10.1016/j.ress.2023.109207
11.
Henry
,
D.
, and
Emmanuel Ramirez-Marquez
,
J.
,
2012
, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Eng. Syst. Saf.
,
99
, pp.
114
122
.10.1016/j.ress.2011.09.002
12.
Ouyang
,
M.
, and
Dueñas-Osorio
,
L.
,
2014
, “
Multi-Dimensional Hurricane Resilience Assessment of Electric Power Systems
,”
Struct. Saf.
,
48
, pp.
15
24
.10.1016/j.strusafe.2014.01.001
13.
Holling
,
C. S.
, and
Holling
,
C. S.
,
1973
, “
Resilience and Stability of Ecological Systems
,”
Annu. Rev. Ecology Systematics
,
4
(
1
), pp.
1
23
.10.1146/annurev.es.04.110173.000245
14.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O'Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.10.1193/1.1623497
15.
Jiang
,
S.
,
Yang
,
L.
,
Cheng
,
G.
,
Gao
,
X.
,
Feng
,
T.
, and
Zhou
,
Y.
,
2022
, “
A Quantitative Framework for Network Resilience Evaluation Using Dynamic Bayesian Network
,”
Comput. Commun.
,
194
, pp.
387
398
.10.1016/j.comcom.2022.07.042
16.
Chang
,
S. E.
, and
Shinozuka
,
M.
,
2004
, “
Measuring Improvements in the Disaster Resilience of Communities
,”
Earthquake Spectra
,
20
(
3
), pp.
739
755
.10.1193/1.1775796
17.
Youn
,
B. D.
,
Hu
,
C.
, and
Wang
,
P.
,
2011
, “
Resilience-Driven System Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101011
.10.1115/1.4004981
18.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Resilience Assessment Based on Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111404
.10.1115/1.4034109
19.
Tong
,
Q.
,
Yang
,
M.
, and
Zinetullina
,
A.
,
2020
, “
A Dynamic Bayesian Network-Based Approach to Resilience Assessment of Engineered Systems
,”
J. Loss Prev. Process Ind.
,
65
, p.
104152
.10.1016/j.jlp.2020.104152
20.
Yarveisy
,
R.
,
Gao
,
C.
, and
Khan
,
F.
,
2020
, “
A Simple yet Robust Resilience Assessment Metrics
,”
Reliab. Eng. Syst. Saf.
,
197
, p.
106810
.10.1016/j.ress.2020.106810
21.
Pawar
,
B.
,
Huffman
,
M.
,
Khan
,
F.
, and
Wang
,
Q.
,
2022
, “
Resilience Assessment Framework for Fast Response Process Systems
,”
Process Saf. Environ. Prot.
,
163
, pp.
82
93
.10.1016/j.psep.2022.05.016
22.
Francis
,
R.
, and
Bekera
,
B.
,
2014
, “
A Metric and Frameworks for Resilience Analysis of Engineered and Infrastructure Systems
,”
Reliab. Eng. Syst. Saf.
,
121
, pp.
90
103
.10.1016/j.ress.2013.07.004
23.
Sharma
,
N.
,
Tabandeh
,
A.
, and
Gardoni
,
P.
,
2018
, “
Resilience Analysis: A Mathematical Formulation to Model Resilience of Engineering Systems
,”
Sustain. Resilient Infrastruct.
,
3
(
2
), pp.
49
67
.10.1080/23789689.2017.1345257
24.
Culler
,
M. J.
,
Morash
,
S.
,
Smith
,
B.
, et al.,
2021
, “
A Cyber-Resilience Risk Management Architecture for Distributed Wind
,” 2021 Resilience Week (
RWS
),
Salt Lake City, UT
, Oct. 18–21, pp.
1
8
.10.1109/RWS52686.2021.9611786
25.
Yang
,
B.
,
Zhang
,
L.
,
Zhang
,
B.
,
Xiang
,
Y.
,
An
,
L.
, and
Wang
,
W.
,
2022
, “
Complex Equipment System Resilience: Composition, Measurement and Element Analysis
,”
Reliab. Eng. Syst. Saf.
,
228
, p.
108783
.10.1016/j.ress.2022.108783
26.
Nana
,
K. O.
, and
Xiaoyan
,
W.
,
2023
, “
Research Hotspots and Frontiers of Foreign Resilient Community Based on CiteSpace
,”
China Saf. Sci. J.
,
33
(
8
), pp.
173
181
.10.16265/j.cnki.issn1003-3033.2023.08.0265
27.
Wei
,
B. I.
,
Yuchun
,
T. A. N. G.
,
Tingting
,
M. A. O.
, et al.,
2021
, “
Review on Resilience Management of Urban Infrastructure System
,”
China Saf. Sci. J.
,
31
(
6
), pp.
14
28
.10.16265/j.cnki.issn1003-3033.2021.06.003
28.
Wang
,
F.
,
Wang
,
J.
,
Wang
,
J.
,
Li
,
Y.
,
Hu
,
L.
, and
Wu
,
Y.
,
2016
, “
Risk Monitor Risk Angel for Risk-Informed Applications in Nuclear Power Plants
,”
Ann. Nucl. Energy
,
91
, pp.
142
147
.10.1016/j.anucene.2015.12.019
29.
Guo
,
Y.
,
Li
,
H.
,
Shen
,
Z.
, et al.,
2022
, “
Storage Reliability Test and Evaluation Method for Rubber Seal Structure of SRM
,”
J. Solid Rocket Technol.
,
45
(
2
), pp.
222
228
.
30.
Xie
,
C.-y.
,
Luo
,
J.-R.
, and
Guo
,
L.-L.
,
2011
, “
Probabilistic Analysis of Radioactive Materials Release Arising From Transportation Accident
,”
J. Saf. Environ.
,
11
(
4
), pp.
242
244
.
31.
Wu
,
H.
,
Xu
,
Y.
,
Liu
,
Z.
,
Li
,
Y.
, and
Wang
,
P.
,
2023
, “
Adaptive Machine Learning With Physics-Based Simulations for Mean Time to Failure Prediction of Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
240
, p.
109553
.10.1016/j.ress.2023.109553
32.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.10.1115/1.4046648
33.
Xu
,
W.-F.
,
Xie
,
R.-Z.
, and
Zhong
,
W.-Z.
,
2017
, “
Drop Impact Analysis Technique of Accident-Resistant Container
,”
Packag. Eng.
,
38
(
21
), pp.
25
30
.
34.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.10.1115/1.4026033
35.
Xie
,
C.
,
Wang
,
P.
, and
Wang
,
Z.
,
2016
, “
Corrosion Reliability Analysis Considering the Coupled Effect of Mechanical Stresses
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
2
(
3
), p.
031001
.10.1115/1.4032003
36.
Keane
,
A. J.
, and
Nair
,
P. B.
,
2005
,
Computational Approaches for Aerospace Design
,
Wiley, Ltd
,
West Sussex
, p.
582
.
37.
Yazdi
,
M.
,
Khan
,
F.
,
Abbassi
,
R.
, and
Quddus
,
N.
,
2022
, “
Resilience Assessment of a Subsea Pipeline Using Dynamic Bayesian Network
,”
J. Pipeline Sci. Eng.
,
2
(
2
), p.
100053
.10.1016/j.jpse.2022.100053
38.
Li
,
H.
,
Peng
,
W.
,
Adumene
,
S.
, and
Yazdi
,
M.
,
2023
, “
Cutting Edge Research Topics on System Safety, Reliability, Maintainability, and Resilience of Energy-Critical Infrastructures
,”
Intelligent Reliability and Maintainability of Energy Infrastructure Assets. Studies in Systems, Decision and Control
,
473
,
Springer
,
Cham, Switerland
.
39.
Yazdi
,
M.
,
Zarei
,
E.
,
Pirbalouti
,
R. G.
, and
Li
,
H.
,
2024
, “
A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development
,”
Int. J. Hydrogen Energy
,
51
, pp.
928
947
.10.1016/j.ijhydene.2023.06.271
You do not currently have access to this content.