Graphical Abstract Figure

Pressure distributions in the compressor with RPW

Graphical Abstract Figure

Pressure distributions in the compressor with RPW

Close modal

Abstract

Rotating detonation turbine engine represents an innovative advancement in the state-of-art gas turbines. When a rotating detonation combustor is coupled with turbomachinery, the rotating detonation wave propagates upstream toward the compressor, affecting its aerodynamic and overall performance. In the present study, a three-dimensional numerical simulation is carried out to study the flow characteristics of a centrifugal compressor with the presence of a rotating pressure wave (RPW) at the outlet based on the unsteady Reynolds-Averaged Navier−Stokes method. Effects of RPW propagation velocity and peak pressure are investigated. The results showed that the rotating pressure wave forms a forward propagating wave (FPW) in the compressor, interacting with the diffuser and impeller blades. In the diffuser, the peak pressure of the FPW initially decreases with a slight recovery. It then decreases rapidly in the impeller. Effects of FPW are distinct from those of the unsteady rotor−stator interaction. A decrease in the propagation velocity enhances the strength of FPW passing through the diffuser channel while lowering the peak pressure mitigates the influence of FPW on the compressor flow field. The FPW leads to the decline of the mass flowrate and the rise of the total pressure ratio. While the mass flowrate and efficiency rise with the increase of propagation velocity, the peak pressure decreases. The isentropic efficiency can increase by up to 2.8% under high propagation velocity and low peak pressure conditions.

References

1.
Zhu
,
Y. Y.
,
Wang
,
K.
,
Wang
,
Z. C.
,
Zhao
,
M. H.
,
Jiao
,
Z. T.
,
Wang
,
Y.
, and
Fan
,
W.
,
2020
, “
Study on the Performance of a Rotating Detonation Chamber With Different Aerospike Nozzles
,”
Aerosp. Sci. Technol.
,
107
, p.
106338
.
2.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.
3.
Ma
,
J. Z.
,
Luan
,
M. Y.
,
Xia
,
Z. J.
,
Wang
,
J. P.
,
Zhang
,
S. J.
,
Yao
,
S. B.
, and
Wang
,
B.
,
2020
, “
Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines
,”
AIAA J.
,
58
(
12
), pp.
4976
5035
.
4.
Wang
,
G. Y.
,
Liu
,
W. D.
,
Liu
,
S. J.
,
Zhang
,
H. L.
,
Peng
,
H. Y.
, and
Zhou
,
Y. F.
,
2021
, “
Experimental Verification of Cylindrical Air-Breathing Continuous Rotating Detonation Engine Fueled by Non-Premixed Ethylene
,”
Acta Astronaut.
,
189
, pp.
722
732
.
5.
Zhao
,
M. H.
,
Wang
,
K.
,
Zhu
,
Y. Y.
,
Wang
,
Z. C.
,
Yan
,
Y.
,
Wang
,
Y. J.
, and
Fan
,
W.
,
2022
, “
Effects of the Exit Convergent Ratio on the Propagation Behavior of Rotating Detonations Utilizing Liquid Kerosene
,”
Acta Astronaut.
,
193
, pp.
35
43
.
6.
Zhang
,
B.
,
2024
, “
Enhancing Detonation Propulsion With Jet in Cross-Flow: A Comprehensive Review
,”
Prog. Aerosp. Sci.
,
147
, p.
101020
.
7.
Yang
,
Z. Z.
, and
Zhang
,
B.
,
2023
, “
Numerical and Experimental Analysis of Detonation Induced by Shock Wave Focusing
,”
Combust. Flame
,
251
, p.
112691
.
8.
Zhao
,
H. J.
,
Zhao
,
R. H.
,
Liu
,
J.
,
Bao
,
Y. X.
, and
Qian
,
X. M.
,
2024
, “
Influence of Elementary Reactions on the Propagation Mechanism of Multicomponent Gas-Phase Detonation
,”
Fuel
,
371
, p.
132002
.
9.
Zhou
,
J. P.
,
Song
,
F. L.
,
Wu
,
Y.
,
Xu
,
S. D.
,
Yang
,
X. K.
,
Cheng
,
P.
, and
Li
,
Y. H.
,
2023
, “
Investigation of Pressure Gain Characteristics for Kerosene-Hot Air RDE
,”
Combust. Flame
,
247
, p.
112503
.
10.
Xu
,
G.
,
Wu
,
Y. W.
,
Kang
,
C. H.
,
Lei
,
T.
,
Qiu
,
Y. M.
,
Ding
,
C. W.
, and
Weng
,
C. S.
,
2023
, “
Propagation Behaviors of Kerosene-Fueled Rotating Detonation Wave With Varied Atomizer Locations
,”
Aerosp. Sci. Technol.
,
142
, p.
108676
.
11.
Wu
,
Y. W.
,
Xu
,
G.
,
Ding
,
C. W.
, and
Weng
,
C. S.
,
2023
, “
On the Wave Propagation Modes and Operation Range in Rotating Detonation Combustor With Varied Injection and Outlet Throat
,”
Phys. Fluids
,
35
(
1
), p.
016128
.
12.
Qiu
,
Y. M.
,
Wu
,
Y. W.
,
Huang
,
Y. K.
,
Li
,
Q.
, and
Weng
,
C. S.
,
2024
, “
Heat Transfer Characteristics of H2/Air Rotating Detonation Combustor
,”
Phys. Fluids
,
36
(
1
), p.
016131
.
13.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E. C.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energ.
,
195
, pp.
247
256
.
14.
Ji
,
Z. F.
,
Zhang
,
H. Q.
, and
Wang
,
B.
,
2019
, “
Performance Analysis of Dual-Duct Rotating Detonation Aero-Turbine Engine
,”
Aerosp. Sci. Technol.
,
92
, pp.
806
819
.
15.
Su
,
L. J.
,
Wen
,
F. B.
,
Wang
,
S. T.
, and
Wang
,
Z. Q.
,
2022
, “
Analysis of Energy Saving and Thrust Characteristics of Rotating Detonation Turbine Engine
,”
Aerosp. Sci. Technol.
,
124
, p.
107555
.
16.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R. T.
,
Wagner
,
M.
,
Schauer
,
F. R.
,
2017
, “
Rotating Detonation Engine Implementation Into an Open-Loop T63 Gas Turbine Engine
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, Texas
, p.
1747
.
17.
Higashi
,
J.
,
Ishiyama
,
C.
,
Nakagami
,
S.
,
Matsuoka
,
K.
,
Kasahara
,
J.
,
Matsuo
,
A.
,
Funaki
,
I.
, and
Moriai
,
H.
,
2017
, “
Experimental Study of Disk-Shaped Rotating Detonation Turbine Engine
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, Texas
, p.
1286
.
18.
Huff
,
R. T.
,
Boller
,
S. A.
,
Polanka
,
M. D.
,
Schauer
,
F. R.
,
Fotia
,
M. L.
, and
Hoke
,
J. L.
,
2020
, “
Radial Rotating Detonation Engine Driven Bleed Air Turbine
,”
J. Propul. Power
,
37
(
2
), pp.
1
9
.
19.
Asli
,
M.
,
Stathopoulos
,
P.
, and
Paschereit
,
C. D.
,
2021
, “
Aerodynamic Investigation of Guide Vane Configurations Downstream a Rotating Detonation Combustor
,”
J. Eng. Gas Turbines Power
,
143
(
6
), p.
061011
.
20.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Thermal Power Plant Upgrade Via a Rotating Detonation Combustor and Retrofitted Turbine With Optimized Endwalls
,”
Int. J. Mech. Sci.
,
188
, p.
105918
.
21.
Shen
,
D. W.
,
Cheng
,
M.
,
Wu
,
K.
,
Sheng
,
Z. H.
, and
Wang
,
J. P.
,
2022
, “
Effects of Supersonic Nozzle Guide Vanes on the Performance and Flow Structures of a Rotating Detonation Combustor
,”
Acta Astronaut.
,
193
, pp.
90
99
.
22.
Zhang
,
C. M.
,
Lin
,
Z. Y.
, and
Dong
,
T. Y.
,
2022
, “
Numerical Study on the Interaction Characterization of Rotating Detonation Wave and Turbine Rotor Blades
,”
Int. J. Hydrogen Energy
,
47
(
10
), pp.
6898
6910
.
23.
Zhou
,
S. B.
,
Ma
,
H.
,
Yang
,
Y. C.
, and
Zhou
,
C. S.
,
2019
, “
Investigation on Propagation Characteristics of Rotating Detonation Wave in a Radial-Flow Turbine Engine Combustor Model
,”
Acta Astronaut.
,
160
, pp.
15
24
.
24.
Li
,
Q.
,
Wu
,
Y. W.
,
Xia
,
Y. Q.
,
Li
,
X.
, and
Weng
,
C. S.
,
2023
, “
Numerical Investigation on the Interactions Between Rotating Detonation Wave Complex and Planar Turbine Cascade
,”
Energy Sci. Eng.
,
11
(
1
), pp.
410
419
.
25.
Ding
,
C. W.
,
Wu
,
Y. W.
,
Huang
,
Y. K.
,
Zheng
,
Q.
,
Li
,
Q.
,
Xu
,
G.
,
Kang
,
C. H.
, and
Weng
,
C. S.
,
2023
, “
Wave Mode Analysis of a Turbine Guide Vane-Integrated Rotating Detonation Combustor Based on Instantaneous Frequency Identification
,”
Energy
,
284
, p.
128612
.
26.
Wei
,
W. L.
,
Wu
,
Y. W.
,
Weng
,
C. S.
, and
Zheng
,
Q.
,
2021
, “
Influence of Propagation Direction on Operation Performance of Rotating Detonation Combustor with Turbine Guide Vane
,”
Def. Technol.
,
17
(
05
), pp.
1617
1624
.
27.
Marelli
,
S.
,
Capobianco
,
M.
, and
Zamboni
,
G.
,
2014
, “
Pulsating Flow Performance of a Turbocharger Compressor for Automotive Application
,”
Int. J. Heat Fluid Flow
,
45
, pp.
158
168
.
28.
Barrera-Medrano
,
M. E.
,
Newton
,
P.
,
Martinez-Botas
,
R.
,
Rajoo
,
S.
,
Tomita
,
I.
, and
Ibaraki
,
S.
,
2017
, “
Effect of Exit Pressure Pulsation on the Performance and Stability Limit of a Turbocharger Centrifugal Compressor
,”
J. Eng. Gas Turbines Power
,
139
(
5
), p.
052601
.
29.
Barrera-Medrano
,
M. E.
,
Martinez-Botas
,
R.
,
Tomita
,
I.
, and
Ibaraki
,
S.
,
2019
, “
On the Effect of Engine Pulsations on the Performance of a Turbocharger Centrifugal Compressor
,”
J. Eng. Gas Turbines Power
,
141
(
8
), p.
081001
.
30.
Galindo
,
J.
,
Climent
,
H.
,
Guardiola
,
C.
, and
Tiseira
,
A.
,
2009
, “
On the Effect of Pulsating Flow on Surge Margin of Small Centrifugal Compressors for Automotive Engines
,”
Exp. Therm. Fluid Sci.
,
33
(
8
), pp.
1163
1171
.
31.
Yang
,
M. Y.
,
Zhang
,
K. Y.
,
Shu
,
M. Y.
, and
Deng
,
K. Y.
,
2020
, “
Experimental Study on Unsteady Flow Field in a Centrifugal Compressor at Pulsating Backpressure Conditions
,”
Aerosp. Sci. Technol.
,
106
, p.
106168
.
32.
Su
,
B. T.
,
Yang
,
C.
,
Zhang
,
H. Z.
,
Shi
,
X.
,
Fu
,
L.
, and
Zhang
,
H.
,
2021
, “
Formation Mechanism of Static Pressure Circumferential Double-Peak Distribution in a Centrifugal Compressor Under the Action of Downstream Boundary
,”
Proc. Inst. Mech. Eng., D: J. Automob. Eng.
,
235
(
8
), pp.
2055
2071
.
33.
Shu
,
M. Y.
,
Yang
,
M. Y.
,
Zhang
,
K. Y.
,
Deng
,
K. Y.
,
Yang
,
B. J.
, and
Martinez-Botas
,
R.
,
2019
, “
Experimental Study on Performance of Centrifugal Compressor Exposed to Pulsating Backpressure
,”
Aerosp. Sci. Technol.
,
95
, p.
105450
.
34.
Ji
,
Z. F.
,
Zhang
,
B.
,
Zhang
,
H. Q.
,
Wang
,
B.
, and
Wang
,
C.
,
2022
, “
Reduction of Feedback Pressure Perturbation for Rotating Detonation Combustors
,”
Aerosp. Sci. Technol.
,
126
, p.
107635
.
35.
Neumann
,
N.
,
Asli
,
M.
,
Garan
,
N.
,
Peitsch
,
D.
, and
Stathopoulos
,
P.
,
2021
, “
A Fast Approach for Unsteady Compressor Performance Simulation Under Boundary Condition Caused by Pressure Gain Combustion
,”
Appl. Therm. Eng.
,
196
, p.
117223
.
36.
Lu
,
J.
,
Zheng
,
L. X.
,
Wang
,
Z. W.
,
Wang
,
L. Y.
, and
Yan
,
C. J.
,
2017
, “
Experimental Investigation on Interactions Between a Two-Phase Multi-Tube Pulse Detonation Combustor and a Centrifugal Compressor
,”
Appl. Therm. Eng.
,
113
, pp.
426
434
.
37.
Jiří
,
V.
, and
Pavel
,
N.
,
2021
, “
An Overview of Flow Instabilities Occurring in Centrifugal Compressors Operating at Low Flow Rates
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111002
.
38.
Zamiri
,
A.
,
Park
,
K. S.
,
Choi
,
M.
, and
Chung
,
J. T.
,
2021
, “
Transient Analysis of Flow Unsteadiness and Noise Characteristics in a Centrifugal Compressor with a Novel Vaned Diffuser
,”
Appl. Sci.
,
11
(
7
), p.
3191
.
39.
Ashrafi
,
F.
,
Michaud
,
M.
, and
Duc Vo
,
H.
,
2016
, “
Delay of Rotating Stall in Compressors Using Plasma Actuators
,”
ASME J. Turbomach.
,
138
(
9
), p.
091009
.
40.
Hacks
,
A. J.
,
Abd El Hussein
,
I.
,
Ren
,
H.
,
Schuster
,
S.
, and
Brillert
,
D.
,
2022
, “
Experimental Data of Supercritical Carbon Dioxide (sCO2) Compressor at Various Fluid States
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041012
.
41.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat. Mass Transfer
,
15
(
02
), pp.
301
314
.
42.
Xiang
,
J. T.
,
Schluter
,
J.
, and
Duan
,
F.
,
2019
, “
Numerical Study of the Tip Clearance Flow in Miniature Gas Turbine Compressors
,”
Aerosp. Sci. Technol.
,
93
, p.
105352
.
43.
Lou
,
J. Y.
,
Fabian
,
J. C.
, and
Key
,
N. L.
,
2018
, “
Design Considerations for Tip Clearance Sensitivity of Centrifugal Compressors in Aero Engines
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, p.
0071
.
44.
Besem
,
F. M.
, and
Kielb
,
R. E.
,
2017
, “
Influence of the Tip Clearance on a Compressor Blade Aerodynamic Damping
,”
J. Propul. Power
,
33
(
1
), pp.
227
233
.
45.
Batabyal
,
P.
,
Alone
,
D. B.
, and
Maharana
,
S. K.
,
2013
, “
Numerical Studies on Effect of Stepped Tip Clearance Height on the Performance of Single Stage Transonic Axial Flow Compressor
,”
Proceedings of the ASME 2013 Gas Turbine India Conference
,
Bangalore, Karnataka
,
Dec. 5-6, p. V001T01A017
.
46.
Zhu
,
G. M.
,
Liu
,
X. L.
,
Yang
,
B.
, and
Song
,
M. R.
,
2021
, “
A Study of Influences of Inlet Total Pressure Distortions on Clearance Flow in an Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101010
.
47.
Chen
,
S. Y.
,
Zuo
,
S. G.
, and
Wei
,
K. J.
,
2021
, “
Numerical Investigation of the Centrifugal Compressor Stability Improvement by Half Vaned Low Solidity Diffusers
,”
J. Therm. Sci.
,
30
(
2
), pp.
696
706
.
48.
Dinh
,
C. T.
,
Ma
,
S. B.
, and
Kim
,
K. Y.
,
2017
, “
Aerodynamic Optimization of a Single-Stage Axial Compressor With Stator Shroud Air Injection
,”
AIAA J.
,
55
(
8
), pp.
2739
2754
.
49.
Pan
,
T. Y.
,
Wu
,
W. Q.
, and
Li
,
Q. S.
,
2021
, “
Effect of Casing Treatment to Switch the Type of Instability Inception in a High-Speed Axial Compressor
,”
Aerosp. Sci. Technol.
,
115
, p.
106801
.
50.
Li
,
B. X.
,
Wu
,
Y. W.
,
Weng
,
C. S.
,
Zheng
,
Q.
, and
Wei
,
W. L.
,
2018
, “
Influence of Equivalence Ratio on the Propagation Characteristics of Rotating Detonation Wave
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
366
378
.
51.
Wu
,
Y. W.
,
Weng
,
C. S.
,
Zheng
,
Q.
,
Wei
,
W. L.
, and
Bai
,
Q. D.
,
2021
, “
Experimental Research on the Performance of a Rotating Detonation Combustor With a Turbine Guide Vane
,”
Energy
,
218
, p.
119580
.
52.
Wu
,
Y. W.
,
Guo
,
J. X.
,
Xu
,
G.
,
Ding
,
C. W.
,
Li
,
Q.
,
Jiang
,
T.
, and
Weng
,
C. S.
,
2024
, “
Wave Mode Observation of Hydrogen/Oxygen Driven Rotating Detonations in the Hollow and Annular Rotating Detonation Rocket Engine
,”
Phys. Fluids
,
36
(
11
), p.
115105
.
53.
Galvas
,
M. R.
,
1975
, “A Compressor Designed for the Energy Research and Development Agency Automotive Gas Turbine Program,” NASA-TM-X-71719.
54.
Skoch
,
G. J.
,
2005
, “
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
,”
ASME J. Turbomach.
,
127
(
1
), pp.
107
117
.
55.
Medic
,
G.
,
Sharma
,
O. P.
,
Jongwook
,
J.
,
Hardin
,
L. W.
,
McCormick
,
D. C.
,
Cousins
,
W. T.
,
Lurie
,
E. A.
,
Shabbir
,
A.
,
Holley
,
B. M.
, and
Slooten
,
P. R. V.
,
2014
, “High Efficiency Centrifugal Compressor for Rotorcraft Applications,” NASA/CR-2014-218114.
56.
Yang
,
M. Y.
,
Cai
,
R. K.
,
Shu
,
M. Y.
,
Pan
,
L.
,
Zhuge
,
W. L.
, and
Yang
,
B. J.
,
2022
, “
Effects of Pulsating Backpressure on Performance of Stability of a Centrifugal Compressor
,”
Aerosp. Sci. Technol.
,
130
, p.
107926
.
57.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis,” NASA-RP-1311.
58.
Suresh
,
A.
,
Hofer
,
D. C.
, and
Tangirala
,
V. E.
,
2012
, “
Turbine Efficiency for Unsteady, Periodic Flows
,”
ASME J. Turbomach.
,
134
(
3
), p.
034501
.
You do not currently have access to this content.