Graphical Abstract Figure

Schlieren views for the transonic case with trip wire, Tu = 0%

Graphical Abstract Figure

Schlieren views for the transonic case with trip wire, Tu = 0%

Close modal

Abstract

High-fidelity numerical simulations based on wall-resolved large-eddy simulations (LESs) are used to investigate the vortex shedding dynamics in a linear turbine cascade. The profile geometry is the well-documented LS59 highly loaded rotor blade. The simulation campaign covered several outlet Mach numbers (subsonic and transonic) and several experimental configurations to shed light on the relations between vortex shedding frequency, the laminar or turbulent states of boundary layers, and the resulting cascade losses. A first major result concerned experiments for transonic outlet Mach number. LES without inlet turbulence and LES without tripping the suction-side boundary layer are unable to match the experimental flow field. In the untripped case, the recirculation bubble is shorter leading to a vortex shedding Strouhal number of 0.17, whereas in simulations with trip wire or inlet turbulence, the bubble was longer, with a Strouhal of 0.24. A second finding is that the inlet turbulence intensity is able to drive the switching between two regimes for subsonic outlet Mach numbers: the so-called detached vortex shedding (long bubble, St0.24) or a “transonic vortex shedding” (short bubble, St0.19). The appearance of shock waves and very coherent rolls in the wake for the “transonic” regime can lead to a doubling of the cascade losses due to the drastic pressure drop near the trailing edge. Such a change in the flow regime, due solely to an increase in freestream turbulence, has not been reported earlier.

References

1.
Sieverding
,
C.
,
1972
,
Transonic Flows in Turbomachinery
, Vol.
59
,
von Karman Institute
,
Rhode-Saint-Genèse, Belgium
.
2.
Baines
,
N.
,
King
,
P.
,
Oldfield
,
M.
,
Kiock
,
R.
,
Hoheisel
,
H.
,
Ramm
,
G.
,
Lehthaus
,
F.
,
Kost
,
F.
, and
Sieverding
,
C.
,
1985
, “
A Comparison of Aerodynamic Measurements of the Transonic Flow Through a Plane Turbine Cascade in Four European Wind Tunnels
,”
8th Symposium on Measuring Techniques for Transonic and Supersonic Flow in Cascades and Turbomachines (MTT08)
,
Genova, Italia
,
Oct. 24–25
,
M.
Troilo
,
F.
Pittaluga
, and
G.
Benvenuto
, eds., pp.
1
38
.
3.
Kiock
,
R.
,
Lehthaus
,
F.
,
Baines
,
N.
, and
Sieverding
,
C.
,
1986
, “
The Transonic Flow Through a Plane Turbine Cascade as Measured in Four European Wind Tunnels
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
277
284
.
4.
Sanz
,
W.
,
Gehrer
,
A.
,
Woisetschläger
,
J.
,
Forstner
,
M.
,
Artner
,
W.
, and
Jericha
,
H.
,
1998
, “
Numerical and Experimental Investigation of the Wake Flow Downstream of a Linear Turbine Cascade
,”
ASME International Gas Turbine and Aeroengine Congress
,
Stockholm, Sweden
,
June 2–5
, 98-GT-246.
5.
Gehrer
,
A.
,
Lang
,
H.
,
Mayrhofer
,
N.
, and
Woisetschläger
,
J.
,
2000
, “
Numerical and Experimental Investigation of Trailing Edge Vortex Shedding Downstream of a Linear Turbine Cascade
,”
ASME International Gas Turbine and Aeroengine Congress
,
Munich, Germany
,
May 8–11
,
2000-GT-434
.
6.
Passmann
,
M.
, and
Joos
,
F.
,
2020
, “
Focusing Schlieren Visualization of Transonic Turbine Tip-Leakage Flows
,”
MDPI Int. J. Turbomach. Propuls. Power
,
5
(
1
), p.
1
.
7.
Passmann
,
M.
,
2021
, “
Experimentelle Untersuchungen Zu Transsonischen Schaufel-spaltströmungen in Axialturbinen
,” Ph.D. thesis,
Universität Der Bundeswehr Hamburg
.
8.
Jagodzińska
,
I.
,
Olszański
,
B.
,
Gumowski
,
K.
, and
Kubacki
,
S.
,
2024
, “
Experimental Investigation of Subsonic and Transonic Flows Through a Linear Turbine Cascade
,”
Eur. J. Mech. B Fluids
,
103
(
1-2
), pp.
182
192
.
9.
Arnone
,
A.
,
Liou
,
M.-S.
, and
Povinelli
,
L.
,
1991
, “
Transonic Cascade Flow Calculations Using Non-periodic C-Type Grids
,”
Computational Fluid Dynamics Symposium on Aeropropulsion
,
Cleveland, USA
,
April 24-26
,
Also NASA Report 19910011758
.
10.
Rubino
,
D.
,
De Palma
,
P.
,
Pascazio
,
G.
, and
Napolitano
,
M.
,
2009
, “
Solution of the Steady Euler Equations Using Fluctuation Splitting Schemes on Quadrilateral Elements
,”
Fourth International Conference on Computational Fluid Dynamics (ICCFD4)
,
Ghent, Belgium
,
July 10–14
,
H.
Deconinck
and
E.
Dick
, eds., Springer-Verlag, Berlin, pp.
101
106
.
11.
Bonfiglioli
,
A.
,
Paciorri
,
R.
, and
Campoli
,
L.
,
2015
, “
Unstructured Shock-Fitting Calculations of Transonic Turbo-Machinery Flows
,”
11th European Conference on Turbomachiney Fluid Dynamics (ETC11)
,
Madrid, Spain
,
June 24–28
, European Turbomachiney Society.
12.
Michel
,
B.
,
Cinnella
,
P.
, and
Lerat
,
A.
,
2011
, “
Multiblock Residual-Based Compact Schemes for the Computation of Complex Turbomachinery Flows
,”
Int. J. Eng. Syst. Model. Simul.
,
3
(
1/2
), pp.
2
15
.
13.
Liu
,
J.
, and
Zhong
,
G.
,
2003
, “
Simulation of Unsteady Flows With Fluctuating Inflow Or Outflow Conditions
,”
J. Therm. Sci.
,
12
(
2
), pp.
162
166
.
14.
Congedo
,
P.
,
Corre
,
C.
, and
Cinnella
,
P.
,
2011
, “
Numerical Investigation of Dense-Gas Effects in Turbomachinery
,”
Comput. Fluids
,
49
(
1
), pp.
290
301
.
15.
Lu
,
Y.
, and
Dawes
,
W.
,
2015
, “
High-Order Large Eddy Simulations for a Transonic Turbine Blade Using Hybrid Unstructured Meshes
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montréal, Canada
,
June 15–19
,
GT2015-42283
.
16.
Dénos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
,
2001
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
123
(
1
), pp.
81
89
.
17.
de la Loma
,
A.
,
Paniagua
,
G.
,
Verrastro
,
D.
, and
Adami
,
P.
,
2008
, “
Transonic Turbine Stage Heat Transfer Investigation in Presence of Strong Shocks
,”
ASME J. Turbomach.
,
130
(
3
), p.
031019
.
18.
Sieverding
,
C.
, and
Manna
,
M.
,
2020
, “
A Review on Turbine Trailing Edge Flow
,”
Int. J. Turbomach. Propul. Power
,
5
(
10
), pp.
1
60
.
19.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
20.
Lehthaus
,
F.
,
1975
, “
Flow Phenomena of Transonic Flow in Two-Dimensional Cascades (Some Experimental Results)
,”
Symposium Transsonicum II
,
Göttingen, Germany
,
Sept. 8–13
,
K.
Oswatitsch
, ed., pp.
322
330
. 1976. Springer-Verlag.
21.
Heinemann
,
H.-J.
,
Lawaczeck
,
O.
, and
Bütefisch
,
K.
,
1976
, “
V. Karman Vortices and Their Frequency Determination in the Wakes of Profiles in the Sub- and Transonic Regimes
,”
Symposium Transsonicum II
,
Göttingen, Germany
,
Sept. 8–13
,
K.
Oswatitsch
, ed., Springer-Verlag, pp.
322
330
.
22.
Sieverding
,
C.
, and
Heinemann
,
H.
,
1990
, “
The Influence of Boundary Layer State on Vortex Shedding From Flat Plates and Turbine Cascades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
181
187
.
23.
Melzer
,
A.
, and
Pullan
,
G.
,
2019
, “
The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
141
(
4
), p.
041001
.
24.
Rossiter
,
A.
,
Pullan
,
G.
, and
Melzer
,
A.
,
2023
, “
The Influence of Boundary Layer State and Trailing Edge Wedge Angle on the Aerodynamic Performance of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
145
(
4
), p.
041008
.
25.
Sieverding
,
C.
,
Richard
,
H.
, and
Desse
,
J.
,
2003
, “
Turbine Blade Trailing Edge Flow Characteristics at High Subsonic Outlet Mach Number
,”
ASME J. Turbomach.
,
125
(
2
), pp.
298
309
.
26.
Gloerfelt
,
X.
, and
Cinnella
,
P.
,
2019
, “
Large Eddy Simulation Requirements for the Flow Over Periodic Hills
,”
Flow, Turbul. Combust.
,
103
(
1
), pp.
55
91
.
27.
Bienner
,
A.
,
Gloerfelt
,
X.
,
Yalçın
,
O.
, and
Cinnella
,
P.
,
2024
, “
Multiblock Parallel High-Order Implicit Residual Smoothing Time Scheme for Compressible Navier-Stokes Equations
,”
Comput. Fluids
,
269
(
1
), p.
106138
.
28.
Bienner
,
A.
,
Gloerfelt
,
X.
, and
Cinnella
,
P.
,
2024
, “
Leading-Edge Effects on Freestream Turbulence Induced Transition of an Organic Vapor
,”
Flow, Turbul. Combust.
,
112
(
11
), pp.
345
373
.
29.
Gloerfelt
,
X.
,
Bienner
,
A.
, and
Cinnella
,
P.
,
2023
, “
High-Subsonic Boundary-Layer Flows of an Organic Vapour
,”
J. Fluid Mech.
,
971
(
9
), p.
A8
.
30.
Lysenko
,
D.
,
2023
, “
Free Stream Turbulence Intensity Effects on the Flow Over a Circular Cylinder at Re=3900: Bifurcation, Attractors and Lyapunov Metric
,”
Ocean Eng.
,
287
(
11
), p.
115787
.
31.
Bazilevs
,
Y.
,
Yan
,
J.
,
de Stadler
,
M.
, and
Sarkar
,
S.
,
2014
, “
Computation of the Flow Over a Sphere at Re=3700: A Comparison of Uniform and Turbulent Inflow Conditions
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121003
.
You do not currently have access to this content.