Abstract

In-flight icing, the formation of ice during flight, poses risks to the safety and reliability of aircraft. Due to environmental conditions, ice accumulation occurs on the low-pressure compressor blades of an engine, diminishing aerodynamic performance and potentially causing damage to the engine. Numerical simulations of ice accretion are conducted on the blades of the NASA Rotor 67 utilizing the computational fluid dynamics software ansys cfx and the in-flight icing software fensap-ice. One-dimensional and two-dimensional sensitivity studies aim to analyze the influences of temperature, droplet diameter, and liquid water content (LWC) on the resulting ice buildup on the blade. The analyses reveal that ice accumulates predominantly at the leading edge of the blade, where collection efficiency is maximal. Additionally, an ice layer forms at the blade root on the pressure side. While LWC and temperature exert a significant influence on the ice mass, only a marginal impact on droplet diameter is observed.

References

1.
Hayashi
,
R.
, and
Yamamoto
,
M.
,
2015
, “
Numerical Simulation on Ice Shedding Phenomena in Turbomachinery
,”
J. Energy Power Eng.
,
9
(
1
), pp.
45
53
.
2.
Pouryoussefi
,
S. G.
,
Mirzaei
,
M.
,
Nazemi
,
M.-M.
,
Fouladi
,
M.
, and
Doostmahmoudi
,
A.
,
2016
, “
Experimental Study of Ice Accretion Effects on Aerodynamic Performance of an NACA 23012 Airfoil
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
585
595
.
3.
Hospers
,
J. M.
,
2013
, “
Eulerian Method for Super-Cooled Large-Droplet Ice-Accretion on Aircraft Wings
,” Ph.D. Thesis, University of Twente.
4.
Liao
,
S.
,
2023
, “
A Probabilistic Model of Icing Induced Fan Unbalance
,”
Proceedings of ASME Turbo Expo 2023
,
Boston, MA
, Paper No. GT2023-102984.
5.
Arizmendi
,
B.
,
Morelli
,
M.
,
Parma
,
G.
,
Zocca
,
M.
,
Quaranta
,
G.
, and
Guardone
,
A.
,
2021
, “In-Flight Icing: Modeling, Prediction, and Uncertainty,”
Optimization Under Uncertainty With Applications to Aerospace Engineering
,
Springer International Publishing
,
New York
, pp.
455
506
.
6.
Tian
,
L.
,
Li
,
L.
,
Hu
,
H.
, and
Hu
,
H.
,
2023
, “
Experimental Study of Dynamic Ice Accretion Process Over Rotating Aeroengine Fan Blades
,”
J. Thermophys. Heat Transfer
,
37
(
2
), pp.
353
364
.
7.
Yamazaki
,
M.
,
Jemcov
,
A.
, and
Sakaue
,
H.
,
2021
, “
A Review on the Current Status of Icing Physics and Mitigation in Aviation
,”
Aerospace
,
8
(
7
), p.
188
.
8.
Shin
,
J.
,
Berkowitz
,
B.
,
Chen
,
H. H.
, and
Cebeci
,
T.
,
1994
, “
Prediction of Ice Shapes and Their Effect on Airfoil Drag
,”
J. Aircraft
,
31
(
2
), pp.
263
270
.
9.
Bragg
,
M.
,
1993
, “
Aircraft Aerodynamic Effects Due to Large Droplet Ice Accretions
,”
34th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 15–18
, p. 932. .
10.
Morelli
,
M.
, and
Guardone
,
A.
,
2022
, “
A Simulation Framework for Rotorcraft Ice Accretion and Shedding
,”
Aerosp. Sci. Technol.
,
129
, p.
107157
.
11.
Das
,
K.
,
Hamed
,
A.
, and
Basu
,
D.
,
2007
, “
Effect of Droplet Ingestion Conditions on Ice Accretion in Turbofan Engines
,”
Proceedings of the 18th International Symposium on Airbreathing Engines
,
Beijing, China
, Paper No. ISABE-2007-1350.
12.
Li
,
L.
,
Liu
,
Y.
, and
Hu
,
H.
,
2018
, “
An Experimental Study of the Dynamic Ice Accreting Process Over a Rotating Aero-Engine Fan Model
,”
2018 Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 25–29
.
13.
Li
,
L.
,
Liu
,
Y.
, and
Hu
,
H.
,
2019
, “
An Experimental Study on Dynamic Ice Accretion Process Over the Surfaces of Rotating Aero-Engine Spinners
,”
Exp. Therm. Fluid. Sci.
,
109
, p.
109879
.
14.
Zheng
,
M.
,
Guo
,
Z.
,
Dong
,
W.
, and
Guo
,
X.
,
2019
, “
Experimental Investigation on Ice Accretion on a Rotating Aero-Engine Spinner with Hydrophobic Coating
,”
Int. J. Heat Mass Transfer
,
136
, pp.
404
414
.
15.
Das
,
K.
,
2006
, “
Numerical Simulations of Icing in Turbomachinery
,” Ph. D. Thesis, University of Cincinnati, 3218043.
16.
Dong
,
W.
,
Zhu
,
J.
,
Wang
,
R.
, and
Chen
,
Y.
,
2015
, “
Numerical Simulation of Icing on the Rotating Blade
,”
Proceedings of ASME Turbo Expo 2015
,
Montréal, Canada
.
17.
Beaugendre
,
H.
,
Morency
,
F.
, and
Habashi
,
W. G.
,
2006
, “
Development of a Second Generation In-Flight Icing Simulation Code
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
378
387
.
18.
Fensap-Ice User Manual
,
2023
, Version 2023R1.
19.
Bourgault
,
Y.
,
Beaugendre
,
H.
, and
Habashi
,
W. G.
,
2000
, “
Development of a Shallow-Water Icing Model in FENSAP-ICE
,”
J. Aircraft
,
37
(
4
), pp.
640
646
.
20.
Messinger
,
B. L.
,
1953
, “
Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed
”.
21.
Ballough
,
J.
,
2007
, “Pilot’s Guide: Flight in Icing Conditions,” FAA, AC, No. 91-74A.
22.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “Laser Anemometer Measurements in a Transonic Axial Flow Fan Rotor”, NASA Technical Paper 2879.
23.
Naseri
,
A.
,
Boroomand
,
M.
, and
Sammak
,
S.
,
2016
, “
Numerical Investigation of Effect of Inlet Swirl and Total-Pressure Distortion on Performance and Stability of an Axial Transonic Compressor
,”
J. Therm. Sci.
,
25
(
6
), pp.
501
510
.
24.
Castaneda
,
J.
,
Mehdi
,
A.
,
Di Cugno
,
D.
, and
Pachidis
,
V.
,
2011
, “
A Preliminary Numerical CFD Analysis of Transonic Compressor Rotors When Subjected to Inlet Swirl Distortion
,”
Proceedings of ASME Turbo Expo 2011
,
Vancouver, British Columbia, Canada
, Paper No. GT2011-46560.
25.
ERCOFTAC Best Practice Guidelines
. https://kbwiki.ercoftac.org/w/index.php/UFR_2-07_Test_Case, Accessed on February 23, 2024. Last Edited on February 12, 2017, at 11:36 a.m.
26.
Flassig
,
P.
, and
Bates
,
R.
,
2014
, “
A Flexible Strategy for Augmenting Design Points for Computer Experiments
,”
Proceedings of 7th DPW
,
Dresden, Germany
,
Oct. 9
.
You do not currently have access to this content.