Abstract

The high-speed relative casing motion between the casing and the turbine blade tip introduces significant complexities to the flow field near the tip, resulting in alterations to the heat transfer distribution on the suction surface of the blade near the tip, and further influences the arrangement of film cooling arrangements. However, due to the challenges associated with measuring heat transfer, the influence of cooling injection on the near-tip region of the suction side under high-speed relative casing motion still remains uncertain. This study aims to address this knowledge gap by conducting experiments on a high-speed disk rotor experimental rig. The heat transfer coefficient and cooling effectiveness are investigated for different cooling hole arrangements. Additionally, based on the computational fluid dynamic (CFD) method, the interaction mechanism of cooling injections under high-speed relative casing movement is comprehensively discussed. It is observed that the cooling effect, which would be effective under stationary conditions, is greatly diminished or even rendered ineffective when subjected to high-speed relative casing conditions. Furthermore, arranging the cooling holes at the location where the interaction between the over-tip-leakage flow and the passage flow occurs would be an effective approach to enhance the cooling performance on the blade near-tip suction side. The effect of different relative casing speeds on suction side near-tip region cooling injection performances is also numerically investigated. These findings contribute to a better understanding of the considerations involved in the film cooling design of turbine blades.

References

1.
Kolagar
,
A. M.
,
Tabrizi
,
N.
, and
Cheraghzadeh
,
M.
,
2017
, “
Failure Analysis of Gas Turbine First Stage Blade Made of Nickel-Based Superalloy
,”
Case Stud. Eng. Fail. Anal.
,
8
, pp.
61
68
.
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
.
3.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part II—Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach
,
114
(
3
), pp.
660
667
.
4.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II—Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.
5.
Gao
,
J.
,
Zheng
,
Q.
,
Liu
,
Y.
, and
Dong
,
P.
,
2017
, “
Effects of Blade Rotation on Axial Turbine Tip Leakage Vortex Breakdown and Loss
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
231
(
9
), pp.
1634
1649
.
6.
Zhu
,
D.
,
Zhang
,
Q.
,
Lu
,
S.
, and
Teng
,
J.
,
2020
, “
Relative Casing Motion Effect on Squealer Tip Cooling Performance at Tight Tip Clearance
,”
ASME J. Therm. Sci. Eng. Appl.
, pp.
1
18
.
7.
Rahman
,
M. H.
,
Kim
,
S. I.
, and
Hassan
,
I.
,
2013
, “
Tip Leakage Flow and Heat Transfer on Turbine Blade Tip and Casing, Part 1: Effect of Tip Clearance Height and Rotation Speed
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
14
(
4
), pp.
290
303
.
8.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J. P.
,
2012
, “
Analysis of Unsteady Tsip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
9.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.
10.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
4
), p.
041026
.
11.
Mansouri
,
Z.
,
Settar
,
A.
, and
Khamane
,
H.
,
2018
, “
Computational Investigation of Heat Load and Secondary Flows Near Tip Region in a Transonic Turbine Rotor With Moving Shroud
,”
Appl. Therm. Eng.
,
136
, pp.
141
151
.
12.
Zou
,
Z.
,
Xuan
,
L.
,
Chen
,
Y.
, and
Shao
,
F.
,
2020
, “
Effects of Flow Structure on Heat Transfer of Squealer Tip in a Turbine Rotor Blade
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104588
.
13.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
,
2012
, “
Effects of Endwall Motion on the Aero-Thermal Performance of a Winglet Tip in a HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061036
.
14.
Acharya
,
S.
, and
Moreaux
,
L.
,
2014
, “
Numerical Study of the Flow Past a Turbine Blade Tip: Effect of Relative Motion Between Blade and Shroud
,”
ASME J. Turbomach.
,
136
(
3
), p.
031015
.
15.
Wang
,
H.
,
Tao
,
Z.
,
Zhou
,
Z.
,
Zhou
,
H.
,
Ma
,
Y.
, and
Li
,
H.
,
2019
, “
A Study for the Film Cooling Performance on the Turbine Blade Suction Side Tip Region Under Rotating Conditions
,”
Int. J. Heat Mass Transfer
,
138
, pp.
483
495
.
16.
Wang
,
H.
,
Tao
,
Z.
,
Zhou
,
Z.
,
Zhao
,
G.
,
Han
,
F.
, and
Li
,
H.
,
2019
, “
An Investigation for the Turbine Blade Film Cooling Performance on the Suction Side Tip Region Under Rotating Condition
,”
Appl. Therm. Eng.
,
150
, pp.
864
874
.
17.
Tao
,
Z.
,
Li
,
G.
,
Deng
,
H.
,
Xiao
,
J.
,
Xu
,
G.
, and
Luo
,
X.
,
2011
, “
Film Cooling Performance in a Low-Speed 1.5-Stage Turbine: Effects of Blowing Ratio and Rotation
,”
J. Enhanced Heat Transfer
,
18
(
5
), pp.
419
432
.
18.
Saha
,
R.
,
Fridh
,
J.
,
Fransson
,
T.
,
Mamaev
,
B. I.
, and
Annerfeldt
,
M.
,
2013
, “
Suction and Pressure Side Film Cooling Influence on Vane Aero Performance in a Transonic Annular Cascade
,”
Proceedings of the ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
.
19.
Dunn
,
M.
, and
Mathison
,
R.
,
2014
, “
History of Short-Duration Measurement Programs Related to Gas Turbine Heat Transfer, Aerodynamics, and Aeroperformance at Calspan and the Ohio State University
,”
ASME J. Turbomach.
,
136
(
4
), p.
041004
.
20.
Ainsworth
,
R. W.
,
Schultz
,
D. L.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
,
1988
, “
A Transient Flow Facility for the Study of the Thermofluid-Dynamics of a Full Stage Turbine Under Engine Representative Conditions
,”
Proceedings of the ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition
,
Amsterdam, The Netherlands
,
June 6–9
.
21.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part I: Vane-Rotor and Rotor-Vane Interaction
,”
ASME J. Turbomach.
,
125
(
1
), pp.
33
39
.
22.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
Proceedings of the ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
.
23.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.
24.
Lu
,
S.
,
Zhang
,
Q.
, and
He
,
L.
,
2022
, “
A High-Speed Disk Rotor Rig Design for Tip Aerothermal Research
,”
ASME J. Turbomach.
,
144
(
5
), p.
051002
.
25.
Xie
,
W.
,
Lu
,
S.
,
Jiang
,
H.
,
Peng
,
X.
, and
Zhang
,
Q.
,
2022
, “
Interaction Mechanism of Transonic Squealer Tip Cooling With the Effect of High-Speed Relative Casing Motion
,”
ASME J. Turbomach
,
145
(
8
), p.
081016
.
26.
Xie
,
W.
,
Peng
,
X.
,
Jiang
,
H.
,
Lu
,
S.
,
Gu
,
Y.
,
Chen
,
C.
, and
Zhang
,
Q.
,
2021
, “
Experimental Study of Turbine Blade Tip Heat Transfer With High-Speed Relative Casing Motion
,”
Proceedings of the Global Power and Propulsion Society
,
Xi'an, China
,
Apr. 11–13
.
27.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
28.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
You do not currently have access to this content.