Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The geometric structure of the supersonic through-flow variable-pitch tandem fan poses challenges in ensuring optimal relative blade positions across various operating modes. This study employed numerical simulations to investigate the impact of axial overlap and percent pitch on the aerodynamic performance of fan in typical modes. Furthermore, it delved into the intricate interplay between the front and rear blades, offering detailed insights into the selection principles governing the relative blade positions in the supersonic through-flow variable-pitch tandem fan. The findings underscored the pivotal role of percent pitch based on chord direction in fan's aerodynamic performance. Specifically, supersonic and transonic modes exhibited superior performance when chord direction percent pitch was set at 10% and 100%, respectively. The key factor contributing to these lower losses was the influence of low-speed fluid from the wake of the front blade, which weakened the shock boundary layer interaction on the rear blade's surface. In the high-speed windmilling mode, within the confines of geometric constraints, higher percent pitch based on chord direction values corresponded to reduced losses. This outcome was primarily attributable to the gap-blocking effect, which diminished the shock boundary layer interaction on the rear blade's pressure side and improved the wake of the rear blade. However, in this mode, the loss demonstrated a positive correlation with the pressure ratio. Consequently, the selection of the relative blade position required a delicate balance between the competing demands of these two factors.

References

1.
Curran
,
F.
,
Hunt
,
J.
,
Lovell
,
N.
,
Maggio
,
G.
, and
Bilardo
,
V.
,
2003
, “
The Benefits of Hypersonic Airbreathing Launch Systems for Access to Space
,”
39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Huntsville, AL
,
July 20–23
.
2.
McClinton
,
C. R.
,
2007
, “
High Speed/Hypersonic Aircraft Propulsion Technology Development
,”
Advances on Propulsion Technology for High-Speed Aircraft
,
1
, pp.
1
32
.
3.
Steelant
,
J.
,
2009
, “
Sustained Hypersonic Flight in Europe: Technology Drivers for LAPCAT II
,”
16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
,
Bremen, Germany
,
Oct. 19–22
.
4.
Kepler
,
C. E.
, and
Champagne
,
G. A.
,
1988
, “Supersonic Through Flow Fan Assessment,” NASA CR-182202.
5.
Kepler
,
C. E.
, and
Champagne
,
G. A.
,
1989
, “
Performance Potential of Air Turbo-Ramjet Employing Supersonic Through-Flow Fan
,”
27th Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 9–12
.
6.
Kepler
,
C. E.
,
Elmquist
,
A. R.
, and
Davis
,
R. L.
,
1992
, “Computational Fluid Dynamics Study of the Variable-Pitch Split-Blade Fan Concept,” NASA CR-189206.
7.
Trucco
,
H.
,
1975
, “Study of Variable Cycle Engines Equipped With Supersonic Fans, Final Report,” NASA CR-134777.
8.
Franciscus
,
L.C.
,
1978
, “Supersonic through-flow fan engines for supersonic cruise aircraft,” NASA TM-78889.
9.
Tavares
,
T.S.
,
1986
, “A Supersonic Fan Equipped Variable Cycle Engine for a Mach 2.7 Supersonic Transport,” NASA CR-177141.
10.
Tweedt
,
D. L.
,
1993
, “
The Aerodynamics of a Baseline Supersonic Throughflow Fan Rotor
,”
Doctor of Philosophy
,
Iowa State University, Digital Repository, Ames
.
11.
Mazzawy
,
R. S.
, and
Virkler
,
J.
,
2007
, “
Variable Pitch Fan – The Solution to Achieving High Propulsive Efficiency Turbofan Engines
,”
The Aerospace Technology Conference and Exposition
,
Los Angeles CA
,
Sept. 17–20
.
12.
Violette
,
J. A.
, and
Loos
,
E. S.
,
2010
, “
Mechanical Design of a Variable Pitch Fan for Turbofan Engines
,”
The ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
ASME Paper No.GT2010-22969
.
13.
Fiekert
,
K.
,
1949
, “
Versuche an Beschaufelungen von Verzögerungsgittern mit Großer Umlenkung
,”
Forsch. Geb. Ingenieurwes., Ausg. A
,
16
(
5
), pp.
141
146
.
14.
Sanger
,
N. L.
,
1971
,
Analytical Study of the Effects of Geometric Changes on the Flow Characteristics of Tandem-Bladed Compressor Stators
,
National Aeronautics and Space Administration
.
15.
Liu
,
B.
,
Fu
,
D.
, and
Yu
,
X.
,
Aug. 2018
, “
Maximum Loading Capacity of Tandem Blades in Axial Compressors
,”
The ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
ASME Paper No.GT2018-76770
.
16.
Liu
,
B.
,
Zhang
,
C.
,
An
,
G.
,
Fu
,
D.
, and
Yu
,
X.
,
2022 Apr
, “
Using Tandem Blades to Break Loading Limit of Highly Loaded Axial Compressors
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
165
175
.
17.
Linnemann
,
H.
,
1964
, “
Tandemgitter in Einem Einstufigen Axialgebläse
,”
Konstruktion
,
16
(
4
), pp.
128
135
.
18.
Pal
,
P.
,
1965
, “
Untersuchungen über den Interferenzeinfluß bei Strömungen Durch Tandem-Schaufelgitter
,”
Ing. Arch.
,
34
(
3
), pp.
173
193
.
19.
McGlumphy
,
J.
,
Ng
,
W.-F.
,
Wellborn
,
S. R.
, and
Kempf
,
S.
,
2010
, “
3D Numerical Investigation of Tandem Airfoils for a Core Compressor Rotor
,”
ASME J. Turbomach.
,
132
(
3)
, p.
031009
.
20.
Hergt
,
A.
, and
Siller
,
U.
,
2015Aug
, “
About Transonic Compressor Tandem Design: A Principle Study
,”
The ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
ASME Paper No.GT2015-42115
.
21.
Hergt
,
A.
, and
Siller
,
U.
,
2016
, “
About Subsonic Compressor Tandem Aerodynamics – A Fundamental Study
,”
The ISROMAC 2016
,
Honolulu, HI
,
April
.
22.
Ghorbanian
,
K.
,
Saeedipour
,
M.
, and
Ghavamabadi
,
N. R.
,
2012
, “
Optimization of a Tandem Blade Configuration in an Axial Compressor
,”
Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
ASME Paper No.GT 2012-69143
.
23.
Mohsen
,
M.
,
Owis
,
F. M.
, and
Hashim
,
A. A.
,
2017
, “
The Impact of Tandem Rotor Blades on the Performance of Transonic Axial Compressors
,”
Aerosp. Sci. Technol.
,
67
, pp.
237
248
.
24.
Yue
,
S.
,
Wang
,
Y.
, and
Wang
,
H.
,
2018
, “
Design and Optimization of Tandem Arranged Cascade in a Transonic Compressor
,”
J. Therm. Sci.
,
27
(
4
), pp.
349
358
.
25.
Li
,
Q.
,
Wu
,
H.
, and
Zhou
,
S.
,
2010
, “
Application of Tandem Cascade to Design of Fan Stator With Supersonic Inflow
,”
Chin. J. Aeronaut.
,
23
(
1
), pp.
9
14
.
26.
Li
,
Z.
,
Lu
,
X.
,
Zhang
,
Y.
,
Han
,
G.
,
Yang
,
C.
, and
Zhao
,
S.
,
2018
, “
Numerical Investigation of a Highly Loaded Centrifugal Compressor Stage With a Tandem Bladed Impeller
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
232
(
3
), pp.
240
253
.
27.
Tao
,
Y.
,
Wu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2020
, “
Analysis of Flow Characteristic of Transonic Tandem Rotor Airfoil and Its Optimization
,”
Appl. Sci.
,
10
(
16
), p.
5569
.
28.
Zhou
,
C.
,
Zhao
,
S.
,
Yang
,
C.
,
Han
,
G.
, and
Lu
,
X.
,
2022
, “
The Matching Characteristics and Flow Mechanisms of Partial-Height Booster Rotor and Fan Rotor for a High-Throughflow Fan
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
236
(
23
), pp.
11240
11255
.
29.
Sun
,
S.
,
Hao
,
J.
,
Yang
,
J.
,
Zhou
,
L.
, and
Ji
,
L.
,
2022
, “
Impacts of Tandem Configurations on the Aerodynamic Performance of an Axial Supersonic Through-Flow Fan Cascade
,”
ASME J. Turbomach.
,
144
(
4
), p.
041009
.
30.
Hao
,
J.
,
Sun
,
S.
,
Yang
,
J.
,
Zhou
,
L.
, and
Ji
,
L.
,
2022
, “
Numerical Study on Effects of Chord Length Ratio of Axial Supersonic Through-Flow Tandem Configuration on Aerodynamic Performance
,”
J. Propul. Technol.
,
43
(
6
), pp.
79
87
.
31.
Venturelli
,
G.
, and
Benini
,
E.
,
2016
, “
Kriging-Assisted Design Optimization of S-Shape Supersonic Compressor Cascades
,”
Aerosp. Sci. Technol.
,
58
, pp.
275
297
.
32.
Chesnakas
,
C. J.
,
1991
, “
Experimental Studies in a Supersonic Through-flow Fan Blade Cascade
,”
Ph.D. dissertation
, Virginia Tech, Blacksburg, VA. http://hdl.handle.net/10919/39790
33.
Zhang
,
L.
,
Kritioti
,
L.
,
Wang
,
P.
,
Zhang
,
J.
, and
Zangeneh
,
M.
,
2022
, “
A Detailed Loss Analysis Methodology for Centrifugal Compressors
,”
ASME J. Turbomach.
,
144
(
5
), p.
051013
.
34.
Moore
,
J.
, and
Moore
,
J.
,
1983
, “Entropy Generation Rates in Air-Cooled Gas Turbine Nozzles: Part-1-A Turbulent Boundary Layer,” ASME paper.
35.
Li
,
Z.
,
Lu
,
X.
,
Wu
,
Y.
, and
Han
,
G.
,
2023
, “
Quantitative Investigation of the Turbulence Model Effect on High-Pressure-Ratio Centrifugal Compressor Performance Prediction
,”
Int. Commun. Heat Mass Transfer
,
142
, p.
106644
.
36.
Liu
,
B.
, and
Zhao
,
B.
,
2012
, “
Effects of Relative Geometry Position of Forward and Aft Blades on Performance of Tandem Rotor
,”
J. Propul. Technol.
,
33
(
1
), pp.
26
36
.
You do not currently have access to this content.