Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To rapidly and accurately predict turbine rotor blade losses within a wide range of incidences (−50–30 deg), graph neural networks (GNNs) are utilized to predict the aerodynamic parameters of two-dimensional turbine blades based on a small-scale experimental dataset. By comparing the backpropagation neural network (BPnn) model and computational fluid dynamics (CFD) results, it is demonstrated that GNNs with appropriately designed graph structures can accurately and quickly predict high-fidelity aerodynamic parameters based on limited experimental data. Unlike traditional data-driven modeling approaches, two innovative methods for improving blade profiles into graph structures are proposed. Relatively few input features are used to comprehensively and effectively represent the turbine blade profile by applying blade profile features in the GNN. The research findings indicate that due to the graph structure, which divides the turbine blade profile into five nodes based on five key points, coupled with high-fidelity experimental data and the unique weight updating mechanism of the graph attention network (GAT) model, the GAT-5 model exhibits the best performance among the studied models. Additionally, when assessing unknown validation blade profiles, the GAT-5 model maintains an absolute error below 6% at an incidence angle of 30 deg compared to the experimental results.

References

1.
Misté
,
G. A.
, and
Benini
,
E.
,
2012
, “
Performance of a Turboshaft Engine for Helicopter Applications Operating at Variable Shaft Speed
,”
Proceedings of the ASME 2012 Gas Turbine India Conference
,
Mumbai, India
,
Dec. 1
, pp.
701
715
.
2.
Misté
,
G.
,
Pellegrini
,
A.
, and
Benini
,
E.
,
2014
, “
Variable Speed Power Turbine Preliminary Design Optimization for Rotorcraft Applications
,”
Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI)
,
Barcelona, Spain
,
July 25
, pp.
1
10
.
3.
Dangelo
,
M.
,
1995
, “
Wide Speed Range Turboshaft Study
,” NASA Contractor Report, NASA-CR-198380.
4.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
5.
Fan
,
D.
,
Zhou
,
Z.
, and
Liu
,
H.
,
2023
, “
Experimental and Computational Study on the Impact of Aerodynamic Load Distribution on Aerodynamic Performance of Variable-Speed Turbine Blade
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 13B: Turbomachinery—Axial Flow Turbine Aerodynamics
,
Boston, MA
,
Sept. 28
.
6.
Cummings
,
R. M.
,
Forsythe
,
J. R.
,
Morton
,
S. A.
, and
Squires
,
K. D.
,
2003
, “
Computational Challenges in High Angle of Attack Flow Prediction
,”
Prog. Aerosp. Sci.
,
39
(
5
), pp.
369
384
.
7.
Ainley
,
D. G.
, and
Mathieson
,
G. C.
,
1951
,
A Method of Performance Estimation for Axial-Flow Turbines
,
Aeronautical Research Council
,
London, UK
.
8.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Power
,
92
(
3
), pp.
252
256
.
9.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
10.
Stewart
,
W. L.
,
1955
, “
Analysis of Two-Dimensional Compressible-Flow Loss Characteristics Downstream of Turbomachine Blade Rows in Terms of Basic Boundary Layer Characteristics
,” NACA-TN-3515.
11.
Wang
,
Q.
,
Yang
,
L.
, and
Rao
,
Y.
,
2021
, “
Establishment of a Generalizable Model on a Small-Scale Dataset to Predict the Surface Pressure Distribution of Gas Turbine Blades
,”
Energy
,
214
, p.
118878
.
12.
Keskin
,
A.
,
Dutta
,
A. K.
, and
Bestle
,
D.
,
2006
, “
Modern Compressor Aerodynamic Blading Process Using Multi-Objective Optimization
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
Sept. 19
, pp.
1209
1216
.
13.
Huppertz
,
A.
,
Flassig
,
P. M.
,
Flassig
,
R. J.
, and
Swoboda
,
M.
,
2007
, “
Knowledge Based 2D Blade Design Using Multi-Objective Aerodynamic Optimization and a Neural Network
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
Mar. 10
, pp.
413
423
.
14.
Rosenblatt
,
F.
,
1958
, “
The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
,”
Psychol. Rev.
,
65
(
6
), pp.
386
408
.
15.
Minsky
,
M.
, and
Papert
,
S. A.
,
2017
,
Perceptrons: An Introduction to Computational Geometry
,
The MIT Press
,
Cambridge, MA
.
16.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
17.
Zhou
,
H.
,
Yu
,
K.
,
Luo
,
Q.
,
Luo
,
L.
,
Du
,
W.
, and
Wang
,
S.
,
2022
, “
Design Methods and Strategies for Forward and Inverse Problems of Turbine Blades Based on Machine Learning
,”
J. Therm. Sci.
,
31
(
1
), pp.
82
95
.
18.
Sekar
,
V.
,
Jiang
,
Q.
,
Shu
,
C.
, and
Khoo
,
B. C.
,
2019
, “
Fast Flow Field Prediction Over Airfoils Using Deep Learning Approach
,”
Phys. Fluids
,
31
(
5
), pp.
057103
.
19.
Du
,
Q.
,
Li
,
Y.
,
Yang
,
L.
,
Liu
,
T.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2022
, “
Performance Prediction and Design Optimization of Turbine Blade Profile With Deep Learning Method
,”
Energy
,
254
, p.
124351
.
20.
Li
,
L.
,
Zhang
,
W.
,
Li
,
Y.
,
Zhang
,
R.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Mu
,
Y.
,
2024
, “
A Non-Parametric High-Resolution Prediction Method for Turbine Blade Profile Loss Based on Deep Learning
,”
Energy
,
288
, p.
129719
.
21.
Sauer
,
H.
,
Muller
,
R.
, and
Vogeler
,
K.
,
2000
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Turbomach.
,
123
(
2
), pp.
207
213
.
22.
Smith
,
L. H.
,
1995
, “
Discussion: “Leading Edge Separation Bubbles on Turbomachine Blades” (Walraevens, R. E., and Cumpsty, N. A., 1995, ASME J. Turbomach., 117, pp. 115–125)
,”
ASME J. Turbomach.
,
117
(
1
), p.
125
.
23.
Xu
,
L.
, and
Denton
,
J. D.
,
1988
, “
The Base Pressure and Loss of a Family of Four Turbine Blades
,”
ASME J. Turbomach.
,
110
(
1
), pp.
9
17
.
24.
Wang
,
X.
, and
Zou
,
Z.
,
2022
, “
Effect of Leading-Edge/Trailing-Edge Geometry on Uncertainty Aerodynamic Performance of a 2D Low-Pressure Turbine Blade
,”
Proceedings of the Global Power and Propulsion Society
,
Xi’an, China
,
Oct. 12
, pp.
1
12
.
25.
Wang
,
J.
,
Yin
,
Z.
,
Zhang
,
H.
,
Tang
,
H.
,
Xu
,
Y.
, and
Chen
,
H.
,
2022
, “
Adaptive Prediction of Turbine Profile Loss and Multi-Objective Optimization in a Wide Incidence Range
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
237
(
12
), pp.
2696
2713
.
26.
Li
,
L.
,
Jiao
,
J.
,
Sun
,
S.
,
Zhao
,
Z.
, and
Kang
,
J.
,
2019
, “
Aerodynamic Shape Optimization of a Single Turbine Stage Based on Parameterized Free-Form Deformation With Mapping Design Parameters
,”
Energy
,
169
, pp.
444
455
.
27.
Wang
,
X.
, and
Zou
,
Z.
,
2019
, “
Uncertainty Analysis of Impact of Geometric Variations on Turbine Blade Performance
,”
Energy
,
176
, pp.
67
80
.
28.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME. J. Turbomach.
,
115
(
4
), pp.
621
656
.
29.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
30.
Qiu
,
S.
, and
Simon
,
T. W.
,
1997
, “
An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows
,”
Proc. ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
Dec. 24
.
31.
Scarselli
,
F.
,
Gori
,
M.
,
Ah Chung
,
T.
,
Hagenbuchner
,
M.
, and
Monfardini
,
G.
,
2009
, “
The Graph Neural Network Model
,”
IEEE Trans. Neural Networks
,
20
(
1
), pp.
61
80
.
32.
Juangphanich
,
P.
,
Rush
,
J.
, and
Scannell
,
N.
,
2023
, “
Graph Neural Networks for the Prediction of Aircraft Surface Pressure Distributions
,” NASA Technical Memorandum, E-20038, Glenn Research Center, Cleveland, OH.
33.
Hines
,
D.
, and
Bekemeyer
,
P.
,
2023
, “
Graph Neural Networks for the Prediction of Aircraft Surface Pressure Distributions
,”
Aerosp. Sci. Technol.
,
137
, p.
108268
.
34.
Fang
,
J.
,
Liu
,
D.
, and
Tse
,
C. K.
,
2023
, “
Impact of Structure of Network Based Data on Performance of Graph Neural Networks
,”
Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS)
,
Monterey, CA
,
May 21
, pp.
1
5
.
35.
Wu
,
X.
,
Wang
,
H.
,
Gong
,
Y.
,
Fan
,
D.
,
Ding
,
P.
,
Li
,
Q.
, and
Qian
,
Q.
,
2023
, “
Graph Neural Networks for Molecular and Materials Representation
,”
J. Mater. Inf.
,
3
(
2
), p.
12
.
36.
Veličković
,
P.
,
Cucurull
,
G.
,
Casanova
,
A.
,
Romero
,
A.
,
Liò
,
P.
, and
Bengio
,
Y.
,
2017
, “
Graph Attention Networks
,” arXiv:1710.10903.
37.
Pritchard
,
L. J.
,
1985
, “
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,”
Proceedings of the ASME 1985 International Gas Turbine Conference and Exhibit. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Houston, TX
,
Mar. 31
.
38.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coloman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), pp.
078001
.
39.
Stewart
,
W. L.
,
Whitney
,
W. J.
, and
Wong
,
R. Y.
,
1960
, “
A Study of Boundary-Layer Characteristics of Turbomachine Blade Rows and Their Relation to Over-All Blade Loss
,”
ASME J. Basic Eng.
,
82
(
3
), pp.
588
592
.
You do not currently have access to this content.