Abstract

The high-speed relative motion between the casing and turbine blade tip significantly complicates the flow field distribution near the blade tip and greatly increases the difficulty of flow field measurement. In this paper, based on a novel high-speed disk rotor experimental rig, first-of-its-kind aerodynamic experimental results near the squealer near-tip region under high-speed relative casing motion conditions are presented. The outlet total pressure loss distribution, outlet flow angle, and near-tip blade loading are measured and compared with those under stationary conditions. Additionally, Reynolds-Averaged Navier–Strokes computational fluid dynamics simulations are employed to validate the results, and the aerodynamic effects near the blade tip under high-speed relative casing conditions are thoroughly discussed. These results reveal the significant influence of high-speed relative casing motion on the flow field near the blade tip, showcasing a concentration of Over-Tip-Leakage flow, enhancement of passage flow, changes in the flow field within the cavity, and interactions between vortices, among a series of findings.

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME. J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Duan
,
P.
,
Tan
,
C. S.
,
Scribner
,
A.
, and
Malandra
,
A.
,
2018
, “
Loss Generation in Transonic Turbine Blading
,”
ASME J. Turbomach.
,
140
(
4
), p.
041006
.
3.
Moore
,
J. O. H. N.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
4.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
5.
Booth
,
T. C.
,
Dodge
,
P.
, and
Hepworth
,
H. K.
,
1982
, “
Rotor-Tip Leakage: Part I—Basic Methodology
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
154
161
.
6.
Chyu
,
M. K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
,
1987
, “
Heat Transfer in Shrouded Rectangular Cavities
,”
J. Thermophys. Heat Transfer
,
1
(
3
), pp.
247
252
.
7.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II—Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.
8.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part II—Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
(
3
), pp.
660
667
.
9.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.
10.
Virdi
,
A. S.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H. D.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power
,
31
(
2
), pp.
527
536
.
11.
Dean
,
R. C.
,
1954
, “
The Influence of Tip Clearance on Boundary-Layer Flow in a Rectilinear Cascade
,” MIT Gas Turbine Laboratory, Report No. 27-3..
12.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part I—Tip Gap Flow
,”
ASME J. Turbomach.
,
114
(
3
), pp.
652
659
.
13.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2003
, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
267
273
.
14.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
,
2008
, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low-Speed Turbine Blade Cascade With Moving End-Wall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011001
.
15.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2012
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
134
(
2
), p.
021020
.
16.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
,
2012
, “
Effects of Endwall Motion on the Aero-Thermal Performance of a Winglet Tip in a HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061036
.
17.
Zhou
,
C.
,
2014
, “
Aerothermal Performance of Different Tips in Transonic Turbine Cascade With End-Wall Motion
,”
J. Propul. Power
,
30
(
5
), pp.
1316
1327
.
18.
Garg
,
A.
,
Singh Rawat
,
S.
, and
Prasad
,
B. V. S. S. S.
,
2020
, “
Effects of Casing Relative Motion on Aerodynamic Performance With Modified Designs of Winglet and Squealer Tip
,”
Proceedings of the Turbo Expo 2020
,
Virtual, Online
,
Sept. 21–25
.
19.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
20.
Zhu
,
D.
,
Zhang
,
Q.
,
Lu
,
S.
, and
Teng
,
J.
,
2020
, “
Relative Casing Motion Effect on Squealer Tip Cooling Performance at Tight Tip Clearance
,”
ASME J. Therm. Sci. Eng. Appl.
, pp.
1
18
.
21.
Duan
,
P. H.
, and
He
,
L.
,
2022
, “
Vortical Structures and Loss Mechanism of Tip Leakage Flow In Subsonic and Transonic Turbine Stages
,”
Proceedings of the Turbo Expo 2022
,
Rotterdam, Netherlands
,
June 13–17
.
22.
Dunn
,
M.
, and
Mathison
,
R.
,
2013
, “
History of Short-Duration Measurement Programs Related to Gas Turbine Heat Transfer, Aerodynamics, and Aeroperformance at Calspan and The Ohio State University
,”
ASME. J. Turbomach.
,
136
(
4
), p.
041004
.
23.
Ainsworth
,
R. W.
,
Schultz
,
D. L.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
,
1988
, “
A Transient Flow Facility for the Study of the Thermofluid-Dynamics of a Full Stage Turbine Under Engine Representative Conditions
,”
Proceedings of the Turbo Expo 1988
,
Amsterdam, The Netherlands
,
June 6–9
.
24.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part II: Vane-Vane Interaction and Discussion of Results
,”
ASME J. Turbomach.
,
125
(
1
), pp.
40
47
.
25.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.
26.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
Proceedings of the Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
.
27.
Lu
,
S.
,
Zhang
,
Q.
, and
He
,
L.
,
2022
, “
A High-Speed Disk Rotor Rig Design for Tip Aerothermal Research
,”
ASME J. Turbomach.
,
144
(
5
), p.
051002
.
28.
Xie
,
W.
,
Peng
,
X.
,
Jiang
,
H.
,
Lu
,
S.
,
Gu
,
Y.
,
Chen
,
C.
, and
Zhang
,
Q.
,
2021
, “
Experimental Study of Turbine Blade Tip Heat Transfer With High-Speed Relative Casing Motion
,”
Proceedings of the Global Power and Propulsion Society
,
Xi'an, China
,
Oct. 18–20
.
29.
Xie
,
W.
,
Lu
,
S.
,
Jiang
,
H.
,
Peng
,
X.
, and
Zhang
,
Q.
,
2023
, “
Interaction Mechanism of Transonic Squealer Tip Cooling With the Effect of High-Speed Relative Casing Motion
,”
ASME J. Turbomach.
,
145
(
8
), p.
081016
.
30.
Chen
,
Y.
,
Cai
,
L.
,
Jiang
,
D.
,
Li
,
Y.
,
Du
,
Z.
, and
Wang
,
S.
,
2023
, “
Experimental and Numerical Investigations for Turbine Aerodynamic Performance With Different Pressure Side Squealers and Incidence Angles
,”
Aerosp. Sci. Technol.
,
136
, p.
108234
.
31.
Nichols
,
R.
,
2003
, “
Applications of RANS/LES Turbulence Models
,”
Proceedings of the 41st Aerospace Sciences Meeting and Exhibit 2003
,
Reno, NV
,
Jan. 6–9
, p.
83
.
32.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
, 4th ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.