Abstract

When the Reynolds (Re) number decreases below the critical value, the intensified turbulent mixing in the corner region rapidly deteriorates the performance of compressors, including efficiency and stability. However, multiscale vortices and transition processes at low Re lead to extremely complex corner flow, and it is difficult in loss control. This article explores the possibility of dynamic surface deformation (DSD) to reduce the loss in the corner region of a highly loaded compressor cascade at Re = 1.8 × 105 and 9.3 × 104. Results show that the dynamics of flapping spanwise vortex (FSV) induced by DSD are directly related to the loss control. At a high DSD oscillation frequency, FSV is unstable and rises to a higher spanwise height, which promotes the transition in the mid-span and reduces the local viscous dissipation. However, it increases the near-endwall viscous dissipation. In contrast, FSV under a low-frequency DSD inhibits transverse flow and radial migration of vortices, thus reducing the near-endwall viscous dissipation. For the single-frequency DSD, the optimal oscillation frequency of DSD matches well with the concentrated shedding vortex (CSV) characteristic frequency, reducing the viscous dissipation by 33.4%. A multifrequency DSD, superimposing the characteristic frequencies of Kelvin–Helmholtz (K–H) vortex and CSV, is superior to single-frequency DSD in terms of loss reduction, and the overall viscous dissipation is 48.6% lower than that of the uncontrolled case.

References

1.
Wallner
,
L. E.
, and
Fleming
,
W. A.
,
1949
, “
Reynolds Number Effect on Axial-Flow Compressor Performance
,”
NACA
.
NACA-RM-E9G11
.
2.
Rhoden
,
H. G.
,
1952
, “
Effects of Reynolds Number on the Flow of Air through a Cascade of Compressor Blades
,”
Aeronautical Research Council Reports and Memoranda
.
No. 2919
.
3.
Pantelidis
,
K.
,
2018
, “
Reynolds Number Effects on the Aerodynamics of Compact Axial Compressors
,” Ph.D. thesis,
University of Cambridge, Trinity Lane, Cambridge
.
4.
Wang
,
M.
,
Lu
,
X.
,
Yang
,
C.
,
Han
,
G.
,
Zhao
,
S.
, and
Zhang
,
Y.
,
2024
, “
Loss Reduction in the Compressor Corner Region via Blade Cooling
,”
Int. J. Mech. Sci.
,
261
.
5.
Zambonini
,
G.
,
2016
, “
Unsteady Dynamics of Corner Separation in a Linear Compressor Cascade
,” Ph.D. thesis,
Université de Lyon, Rue Garibaldi, Lyon
.
6.
Chen
,
Z.
,
Wu
,
Y.
,
An
,
J.
, and
Gan
,
J.
,
2019
, “
Impact of Reynolds Number on Unsteady Flow in Axial Flow Compressor Rotor
,”
J. Aerosp. Power
,
34
(
12
), pp.
2706
2718
.
7.
Hutchings
,
J.
,
2022
, “
Unsteady Aerodynamics of Compact Axial Compressors
,” Ph.D. thesis,
University of Cambridge, Trinity Lane, Cambridge
.
8.
Cyrus
,
V.
,
1988
,
The Effect of the Reynolds Number on the Three-Dimensional Flow in a Straight Compressor Cascade. Volume 1. Turbomachinery
,
American Society of Mechanical Engineers
,
Amsterdam, The Netherlands
, p.
V001T01A096
.
9.
Zhou
,
M.
,
Wang
,
R.
,
Bai
,
Y.
,
Wang
,
X.
, and
Wu
,
W.
,
2009
, “
Research on Flow Instability Triggering Process at Stall Condition of Transonic Compressor Rotor at Low Reynolds Number
,”
J. Aerosp. Power
,
24
(
6
), pp.
1379
1384
.
10.
Sonoda
,
T.
,
Yamaguchi
,
Y.
,
Arima
,
T.
,
Olhofer
,
M.
,
Sendhoff
,
B.
, and
Schreiber
,
H.
,
2004
, “
Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition—Part I: Design and Optimization
,”
ASME J. Turbomach.
,
126
(
3
), pp.
350
359
.
11.
Liu
,
Q.
,
Zhong
,
S.
, and
Li
,
L.
,
2020
, “
Investigation of Riblet Geometry and Start Locations of Herringbone Riblets on Pressure Losses in a Linear Cascade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
142
(
10
), p.
101010
.
12.
Zhang
,
P.
,
Cheng
,
R.
, and
Li
,
Y.
,
2024
, “
Numerical Study on the Corner Separation Control for a Compressor Cascade via Bionic Herringbone Riblets
,”
Aerospace
,
11
(
1
), p.
90
.
13.
Han
,
S.
,
Yang
,
Z.
, and
Zhong
,
J.
,
2023
, “
Effects of Herringbone Microgrooves on Profile Loss of a High Subsonic Compressor Under Low Reynolds Number
,”
J. Propul. Technol.
,
44
(
12
), pp.
1
12
.
14.
Xu
,
H.
,
Zhao
,
S.
,
Wang
,
M.
, and
Yang
,
C.
,
2024
, “
Effects of Bionic Leading Edge on the Aerodynamic Performance of a Compressor Cascade at a Low Reynolds Number
,”
J. Therm. Sci.
,
33
(
4
), pp.
1272
1285
.
15.
Wang
,
M.
,
Yang
,
C.
,
Li
,
Z.
,
Zhao
,
S.
,
Zhang
,
Y.
, and
Lu
,
X.
,
2021
, “
Effects of Surface Roughness on the Aerodynamic Performance of a High Subsonic Compressor Airfoil at Low Reynolds Number
,”
Chin. J. Aeronaut.
,
34
(
3
), pp.
71
81
.
16.
Cheng
,
H.
,
Wang
,
M.
,
Zhou
,
C.
,
Zhao
,
S.
,
Lu
,
X.
, and
Zhu
,
J.
,
2021
, “
Influence of Surface Roughness on a Highly Loaded Axial Compressor Stage Performance at Low Reynolds Number
,”
Int. J. Aerosp. Eng.
,
2021
, pp.
1
18
.
17.
Sanchez
,
D.
,
2023
, “
Control of Flow Over a 3D Compressor Blade with End
,” Ph.D. thesis,
San Diego State University, San Diego, CA
.
18.
Zhang
,
B.
,
Mao
,
X.
,
Liu
,
B.
,
Wang
,
H.
,
Yang
,
Z.
, and
Chen
,
Q.
,
2023
, “
Mechanisms of Oscillating Suction in Controlling the tip Leakage Flow in a High-Load Compressor Cascade
,”
Aerosp. Sci. Technol.
,
133
, p.
108118
.
19.
Wang
,
Y.
,
Zhang
,
H.
,
Wu
,
Y.
,
Li
,
Y.
, and
Zhu
,
Y.
,
2022
, “
Compressor Airfoil Separation Control Using Nanosecond Plasma Actuation at Low Reynolds Number
,”
AIAA J.
,
60
(
2
), pp.
1171
1185
.
20.
Wu
,
Y.
, and
Li
,
Y.
,
2015
, “
Progress and Outlook of Plasma Flow Control
,”
Acta Aeronaut. Astronaut. Sin.
,
36
(
2
), pp.
381
405
.
21.
Bashir
,
M.
, and
Rajendran
,
P.
,
2018
, “
A Review on Electroactive Polymers Development for Aerospace Applications
,”
J. Intell. Mater. Syst. Struct.
,
29
(
19
), pp.
3681
3695
.
22.
DeMauro
,
E.
,
Dell’Orso
,
H.
,
Zaremski
,
S.
,
Leong
,
C.
, and
Amitay
,
M.
,
2015
, “
Control of Laminar Separation Bubble on NACA 0009 Airfoil Using Electroactive Polymers
,”
AIAA J.
,
53
, pp.
1
10
.
23.
Huebsch
,
W. W.
,
2006
, “
Two-Dimensional Simulation of Dynamic Surface Roughness for Aerodynamic Flow Control
,”
J. Aircr.
,
43
(
2
), pp.
353
362
.
24.
Lei
,
J.
,
Zhang
,
J.
, and
Niu
,
J.
,
2020
, “
Effect of Active Oscillation of Local Surface on the Performance of Low Reynolds Number Airfoil
,”
Aerosp. Sci. Technol.
,
99
, p.
105774
.
25.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2019
, “
Direct Numerical Simulation of Transition Control via Local Dynamic Surface Modification
,”
AIAA J.
,
57
(
8
), pp.
3309
3321
.
26.
Amitay
,
M.
,
Tuna
,
B. A.
, and
Dell’Orso
,
H.
,
2016
, “
Identification and Mitigation of T-S Waves Using Localized Dynamic Surface Modification
,”
Phys. Fluids
,
28
(
6
), p.
064103
.
27.
Yang
,
R.
,
Zhong
,
D.
, and
Ge
,
N.
,
2019
, “
Numerical Investigation on Flow Control Effects of Dynamic Hump for Turbine Cascade at Different Reynolds Number and Hump Oscillating Frequency
,”
Aerosp. Sci. Technol.
,
92
, pp.
280
288
.
28.
Wang
,
M.
,
Lu
,
X.
,
Yang
,
C.
,
Zhao
,
S.
, and
Zhang
,
Y.
,
2023
, “
Control of Separated Flow Transition Over a Highly Loaded Compressor Blade via Dynamic Surface Deformation
,”
Int. J. Mech. Sci.
,
241
, p.
107980
.
29.
Zhang
,
Y.
,
Mahallati
,
A.
, and
Benner
,
M.
,
2014
, “
Experimental and Numerical Investigation of Corner Stall in a Highly-Loaded Compressor Cascade
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2A: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
.
30.
Gao
,
F.
,
2014
, “
Advanced Numerical Simulation of Corner Separation in a Linear Compressor Cascade
,” Ph.D. thesis,
Ecole Centrale de Lyon, Collongue, Ecully
.
31.
Wang
,
M.
,
Lu
,
X.
,
Zhao
,
S.
, and
Zhang
,
Y.
,
2023
, “
Numerical Investigations of Vortex Dynamics and Loss Generation in the Corner Separation Region of a High Subsonic Compressor Blade
,”
Phys. Fluids
,
35
(
2
), p.
025104
.
32.
Hain
,
R.
,
Kähler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.
33.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
J. Fluid. Eng.
,
139
(
6
), p.
061101
.
34.
Von
,
D. A. E.
, and
Horton
,
E. A.
,
1958
, “
A Low-Speed Experimental Investigation of the Effect of a Sandpaper Type of Roughness on Boundary-Layer Transition
,”
NACA
.
NACA-TR-1349
.
35.
Im
,
J. H.
,
Shin
,
J. H.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2013
, “
Effect of Leading Edge Roughness and Reynolds Number on Compressor Profile Loss
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2A: Turbomachinery
,
San Antonio, TX
,
June 3–7
.
36.
Herwig
,
H.
, and
Kock
,
F.
,
2007
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.
37.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.
You do not currently have access to this content.