Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The discharge coefficient of laidback fan-shaped holes on turbine blades under internal crossflow conditions is investigated using experimental and numerical simulation methods. The study is conducted on a linear cascade, with single rows of film holes set on both the pressure and suction surfaces of the test blade, coolant supplied by an internal crossflow channel. The internal crossflow Reynolds number ranged from 39,100 to 78,200, and the pressure ratio ranged from 1 to 1.5. This research considered the effects of internal crossflow Reynolds numbers and hole length-to-diameter ratio on the discharge coefficient of laidback fan-shaped holes. The findings are as follows: internal crossflow increases the inlet loss of film holes and flow separation within the holes, leading to a significant reduction in the discharge coefficient of film holes. Meanwhile, film holes on the pressure surface of the blade exhibit greater sensitivity to crossflow. Under different hole length-to-diameter ratio conditions, the length of the cylindrical section is the primary factor affecting the discharge coefficient, and the magnitude of the discharge coefficient depends on the extent of flow separation within the cylindrical section. The sensitivity of the discharge coefficient to variations in the cylindrical section length decreases once the cylindrical section length exceeds 2.8D for the pressure surface and 2.0D for the suction surface, where the inlet separation region reattaches to the wall. Under plenum conditions, there are significant differences in the discharge coefficients of film holes between the suction surface and pressure surface, especially at pressure ratios below 1.05.

References

1.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME. J. Turbomach.
,
120
(
2
), pp.
314
319
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
4.
Wei
,
H.
, and
Zu
,
Y. Q.
,
2021
, “
Experimental Study on Heat Transfer and Throughflow Losses Characteristics of Single/Triple-Row Holes With an Engine-Representative Density Ratio
,”
Case Stud. Therm. Eng.
,
28
, p.
101574
.
5.
Hay
,
N.
, and
Lampard
,
D.
,
1995
, “
The Discharge Coefficient of Flared Film Cooling Holes
,”
Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Houston, TX
,
Jun. 5–8
, p.
V004T09A015
, ASME Paper No.95-GT015.
6.
Haoyang
,
L.
,
Qiang
,
D.
,
Qingzong
,
X.
,
Guangyao
,
X.
,
Hongye
,
L.
, and
Dawei
,
C.
,
2023
, “
Sensitivity of Laidback Fan-Shaped Hole Discharge Coefficient Under Internal Coolant Crossflow Conditions
,”
ASME J. Turbomach.
,
145
(
11
), p.
111007
.
7.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
8.
Colban
,
W.
,
Gratton
,
A.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2006
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
128
(
1
), pp.
53
61
.
9.
Furukawa
,
T.
, and
Ligrani
,
M. P.
,
2002
, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
,
16
(
2
), pp.
228
237
.
10.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
1999
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
11.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), pp.
905
919
.
12.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness – Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
13.
Haoyang
,
L.
,
Qiang
,
D.
,
Qingzong
,
X.
,
Guangyao
,
X.
,
Hongye
,
L.
,
Dawei
,
C.
,
Song
,
L.
, and
Siyi
,
W.
,
2024
, “
Effect of the Key Geometry and Flow Parameters on Discharge Coefficient of Laidback Fan-Shaped Hole Under Coolant Crossflow Condition
,”
ASME J. Turbomach.
,
146
(
8
), p.
081006
.
14.
Li
,
L.
,
Liu
,
C. L.
,
Ye
,
L.
,
Zhu
,
H. R.
,
Luo
,
J. X.
, and
Liu
,
S.
,
2021
, “
Experimental Investigation on Effects of Cross-Flow Reynolds Number and Blowing Ratios to Film Cooling Performance of the Y-Shaped Hole
,”
Int. J. Heat Mass Transfer
,
179
, p.
121682
.
15.
Guo
,
L.
,
Yan
,
Y. Y.
, and
Maltson
,
J. D.
,
2011
, “
Numerical Study on Discharge Coefficients of a Jet in Crossflow
,”
Comput. Fluids
,
49
(
1
), pp.
323
332
.
16.
Roger
,
T.
, and
Hersh
,
A. S.
,
1975
, “
The Effect of Grazing Flow on the Steady State Resistance of Squared-Edged Orifices
,”
Proceedings of the 2nd Aeroacoustics Conference
,
Hampton, VA
,
Mar. 1975
, AIAA, pp. 1–11, Paper No.75-493.
17.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2001
, “
Large-Scale Testing to Validate the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
(
3
), pp.
593
600
.
18.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.