Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper investigates the influence of ribbed crossflow on the film cooling performance of a turbine rotor blade. A pressure-sensitive paint measurement technique was employed to measure the effectiveness of film cooling. The discharge coefficients were also measured to determine the flow resistance. A row of film holes was positioned at the pressure surface or suction surface with a spanwise hole spacing of 7.5D, which is half of the rib spacing. The experiments were carried out at a mainstream Reynolds number of 520,000, a turbulence intensity of 3.6%, and a density ratio of 0.97. The crossflow inlet velocity was 45% of the cascade inlet velocity. A fan-shaped hole with a 14 deg expansion angle (Fans-14), a horizontally oriented slot cross section diffusion hole with a 14 deg expansion angle (H1.7-14), and two vertically oriented slot cross section diffusion holes with 14 deg (V1.7-14) and 20 deg (V1.7-20) expansion angles were tested with/without crossflow. The results indicated that the slot cross-sectional orientation significantly changes the flow patterns inside the holes. H1.7-14 has stronger lateral expansion and better surface adhesion, while V1.7-14 and V1.7-20 yield more uniform lateral velocity distributions. Regardless of crossflow, H1.7-14 produces the highest film effectiveness and discharge coefficient on the pressure surface, while it changes to V1.7-20 on the suction surface. The ribbed crossflow increases the film effectiveness on both the pressure surface and suction surface, except for V1.7-20, as it is almost unaffected by the crossflow.

References

1.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
2.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison of the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes with Special Emphasis on the Effect of Internal Coolant Crossflow
,”
ASME Paper, No. GT2008-51036
.
3.
Acharya
,
S.
, and
Leedom
,
D. H.
,
2013
, “
Large Eddy Simulations of Discrete Hole Film Cooling with Plenum Inflow Orientation Effects
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011010
.
4.
Hay
,
N.
,
Lampard
,
D.
, and
Benmansour
,
S.
,
1983
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes
,”
J. Eng. Power
,
105
(
2
), pp.
243
248
.
5.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
533
540
.
6.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
7.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes with Varying Angles of Deviation and Orientation
,”
ASME J. Turbomach.
,
123
(
4
), pp.
781
787
.
8.
Bunker
,
R. S.
, and
Bailey
,
J. C.
,
2001
, “
Film Cooling Discharge Coefficient Measurements in a Turbulated Passage with Internal Crossflow
,”
ASME J. Turbomach.
,
123
(
4
), pp.
774
780
.
9.
McClintic
,
J. W.
,
Klavetter
,
S. R.
,
Winka
,
J. R.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2015
, “
The Effect of Internal Crossflow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
137
(
7
), p.
071006
.
10.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness-Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011004
.
11.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness-Part II: Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011004
.
12.
Fraas
,
M.
,
Glasenapp
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2019
, “
Film Cooling Measurements Hole: Effect of Coolant Crossflow on Cooling Effectiveness and Heat Transfer
,”
ASME J. Turbomach.
,
141
(
4
), p.
041006
.
13.
Wilfert
,
G.
, and
Wolff
,
S.
,
1999
, “
Influence of Internal Flow on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
122
(
2
), pp.
327
333
.
14.
Agata
,
Y.
,
Takahashi
,
T.
,
Sakai
,
E.
, and
Nishino
,
K.
,
2012
, “
Effects of Turbulence Promoters of Gas Turbine Blades on Film Cooling Performance
,”
J. Therm. Sci. Technol.
,
7
(
4
), pp.
603
618
.
15.
Agata
,
Y.
,
Takahashi
,
T.
,
Sakai
,
E.
, and
Nishino
,
K.
,
2013
, “
Effect of Orientation of Internal Turbulence Promoting Ribs on Flow Characteristics for Film Cooling
,”
J. Therm. Sci. Technol.
,
8
(
1
), pp.
15
27
.
16.
Sakai
,
E.
,
Takahashi
,
T.
, and
Agata
,
Y.
,
2013
, “
Experimental Study on Effects of Internal Ribs and Rear Bumps on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
135
(
5
), p.
031025
.
17.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Crossflow
,”
ASME J. Turbomach.
,
138
(
12
), p.
121006
.
18.
Liu
,
C. L.
,
Ye
,
L.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2017
, “
Investigation on the Effects of Rib Orientation Angle on the Film Cooling With Ribbed Crossflow Coolant Channel
,”
Int. J. Heat Mass Transfer
,
115
(
2017
), pp.
379
394
.
19.
Wei
,
P.
,
Sun
,
X. K.
,
Jiang
,
P. X.
, and
Wang
,
J.
,
2017
, “
Effect of Ribbed and Smooth Coolant Crossflow Channel on Film Cooling
,”
Nucl. Eng. Des.
,
316
, pp.
186
197
.
20.
Xie
,
G. N.
,
Liu
,
X. T.
, and
Yan
,
H. B.
,
2017
, “
Film Cooling Performance and Flow Characteristics of Internal Cooling Channels with Continuous/Truncated Ribs
,”
Int. J. Heat Mass Transfer
,
105
(
2017
), pp.
67
75
.
21.
Fox
,
D. W.
,
Jones
,
F. B.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z.
,
2019
, “
Rib Turbulator Effects on Crossflow-Fed Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
141
(
3
), p.
031013
.
22.
Li
,
L.
,
Liu
,
C. L.
,
Ye
,
L.
,
Zhu
,
H. R.
,
Luo
,
J. X.
, and
Liu
,
S.
,
2021
, “
Experimental Investigation on Effects of Crossflow Reynolds Number and Blowing Ratios to Film Cooling Performance of the Y-Shaped Hole
,”
Int. J. Heat Mass Transfer
,
179
, p.
121682
.
23.
Zhu
,
H. T.
,
Xie
,
G. N.
,
Zhu
,
R.
, and
Sunden
,
B.
,
2022
, “
Comparisons on Flow Characteristics and Film Cooling Performance of Cylindrical and Sister Holes With/Without Internal Coolant Crossflow
,”
Int. J. Therm. Sci.
,
182
, p.
107791
.
24.
Qenawy
,
M.
,
Zhou
,
W. W.
, and
Liu
,
Y. Z.
,
2022
, “
Effects of Crossflow-Fed-Shaped Holes on the Adiabatic Film Cooling Effectiveness
,”
Int. J. Therm. Sci.
,
177
, p.
107578
.
25.
Qenawy
,
M.
,
Taha
,
M.
,
Wang
,
J. F.
, and
Abdelbaky Elbatran
,
A. H.
,
2023
, “
Effects of Hole-Inlet Velocity on the Adiabatic Film Cooling Effectiveness Behind Crossflow-Fed Shaped Holes
,”
Appl. Therm. Eng.
,
222
(
2023
), p.
119927
.
26.
Xu
,
G. Y.
,
An
,
B. T.
,
Yu
,
Z. Q.
, and
Li
,
C.
,
2020
, “
Numerical Investigation on Film Cooling Characteristics of Slot-Sectional Diffusion Holes Combined With an Internal Crossflow Channel
,”
Appl. Therm. Eng.
,
181
, p.
115953
.
27.
Li
,
C.
,
An
,
B. T.
, and
Liu
,
J. J.
,
2022
, “
Effect of Coolant Crossflow on Film Cooling Effectiveness of Diffusion Slot Hole With and Without Ribs
,”
ASME J. Turbomach.
,
144
(
9
), p.
091005
.
28.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2017
, “
Geometrical Parameter Effects on Film Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.
29.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2018
, “
Effects of Inclination Angle, Orientation Angle, and Hole Length on Film Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
140
(
7
), p.
071003
.
30.
Yu
,
Z.
,
Li
,
C.
,
An
,
B.
,
Liu
,
J.
, and
Xu
,
G.
,
2020
, “
Experimental Investigation of Film Cooling Effectiveness on a Gas Turbine Blade Pressure Surface With Diffusion Slot Holes
,”
Appl. Therm. Eng.
,
168
, p.
114851
.
31.
Hu
,
J. J.
, and
An
,
B. T.
,
2023
, “
Film Cooling Effectiveness on Pressure Surface and Suction Surface of Turbine Guide Vane With Diffusion Slot Holes
,”
ASME J. Turbomach.
,
145
(
10
), p.
101007
.
32.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
33.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique Front
,”
Heat Mass Transfer
,
1
(
1
), p.
013001
.
34.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.
35.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes with Expanded Exits
,”
ASME J. Tubomach.
,
120
(
3
), pp.
557
563
.
36.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I-Streamwise Injection with Cylindrical Holes
,”
ASME J. Tubomach.
,
122
(
1
), pp.
102
112
.
37.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Tubomach.
,
134
(
6
), p.
061007
.
You do not currently have access to this content.