Abstract

This article presents a maximum likelihood approach to identifying the mistuning, aerodynamic forcing functions, and aerodynamic influence coefficients of compressor rotor blades from noisy experimental measurements of blade deflection. The maximum likelihood estimation approach leads naturally to a nonlinear least squares optimization problem that can be solved using numerical optimization techniques such as quasi-Newton methods. An eigenmode decomposition approach is presented that permits the optimization objective function and gradient to be efficiently calculated so that the optimization is computationally feasible, even for experiments involving very large data sets. Simulation results show that the method has the potential to accurately identify the mistuning and aerodynamic nodal diameter forcing functions, but obtaining accurate results for influence coefficients may not be possible if there is significant disk flexibility. We demonstrate the method using both simulated and experimental blade vibration data from rotor 2 of the Purdue University three-stage axial compressor research facility collected using a light probe tip timing system as the rotor is slowly accelerated or decelerated through a Campbell diagram crossing.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.
2.
Mignolet
,
M. P.
, and
Lin
,
C.-C.
,
1997
, “
Identification of Structural Parameters in Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
428
438
.
3.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach
,
126
(
1
), pp.
150
158
.
4.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part II: Application
,”
ASME J. Turbomach
,
126
(
1
), pp.
159
165
.
5.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.
6.
Figaschewsky
,
F.
, and
Kühhorn
,
A.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 1: Theory and Benchmark Under Rotating Conditions
,”
15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
,
Oxford, UK
,
Sept. 24–27
, Paper No. ISUAAAT15-048.
7.
Beirow
,
B.
,
Figaschewsky
,
F.
, and
Kühhorn
,
A.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 2: Application to Blisks at Rest
,”
15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
,
Oxford, UK
,
Sept. 24–27
, Paper No. ISUAAAT15-021.
8.
Figaschewsky
,
F.
,
Kühhorn
,
A.
,
Beirow
,
B.
,
Giersch
,
T.
,
Schrape
,
S.
, and
Nipkau
,
J.
,
2019
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning: Part 3—Application to Engine Data
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics
,
Phoenix, AZ
,
June 17–21
, ASME, p. V07AT36A014.
9.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.
10.
Salhi
,
B.
,
Lardiès
,
J.
,
Berthillier
,
M.
,
Voinis
,
P.
, and
Bodel
,
C.
,
2008
, “
Modal Parameter Identification of Mistuned Bladed Disks Using Tip Timing Data
,”
J. Sound Vib.
,
314
(
3–5
), pp.
885
906
.
11.
Salhi
,
B.
,
Lardies
,
J.
, and
Berthillier
,
M.
,
2009
, “
Identification of Modal Parameters and Aeroelastic Coefficients in Bladed Disk Assemblies
,”
Mech. Syst. Signal Process.
,
23
(
6
), pp.
1894
1908
.
12.
Vishwakarma
,
V.
, and
Sinha
,
A.
,
2016
, “
Estimation of Forcing Function for a Geometrically Mistuned Bladed Rotor Via Modified Modal Domain Analysis
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042507
.
13.
Huang
,
Y.
,
Dimitriadis
,
G.
,
Kielb
,
R. E.
, and
Li
,
J.
,
2017
, “
System Eigenvalue Identification of Mistuned Bladed Disks Using Least-Squares Complex Frequency-Domain Method
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 7B: Structures and Dynamics
,
Charlotte, NC
,
June 26–30
, ASME, p. V07BT36A001. http://dx.doi.org/ 10.1115/GT2017-63008
14.
Guillaume
,
P.
,
Verboven
,
P.
, and
Vanlanduit
,
S.
,
1998
, “
Frequency-Domain Maximum Likelihood Identification of Modal Parameters With Confidence Intervals
,”
Proceedings of the International Seminar on Modal Analysis
,
Leuven, Belgium
,
Sept. 16
,
Katholieke Universiteit Leuven
, Vol. 1, pp.
359
366
.
15.
Guillaume
,
P.
,
Verboven
,
P.
,
Vanlanduit
,
S.
,
Van Der Auweraer
,
H.
, and
Peeters
,
B.
,
2003
, “
A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator
,”
Proceedings of the 21st IMAC
,
Kissimmee, FL
,
Feb. 3–6
,
Society for Experimental Mechanics
, pp.
183
192
.
16.
Peeters
,
B.
,
Van der Auweraer
,
H.
,
Guillaume
,
P.
, and
Leuridan
,
J.
,
2004
, “
The Polymax Frequency-Domain Method: A New Standard for Modal Parameter Estimation?
,”
Shock Vib.
,
11
(
3–4
), pp.
395
409
.
17.
Murray
,
W. L., III
, and
Key
,
N. L.
,
2015
, “
Experimental Investigation of a Forced-Response Condition in a Multistage Compressor
,”
J. Propul. Power
,
31
(
5
), pp.
1320
1329
.
18.
Besem
,
F. M.
,
Kielb
,
R. E.
, and
Key
,
N. L.
,
2015
, “
Forced Response Sensitivity of a Mistuned Rotor From an Embedded Compressor Stage
,”
ASME J. Turbomach.
,
138
(
3
), p.
031002
.
19.
Van Trees
,
H. L.
,
2004
,
Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory
,
John Wiley & Sons
,
New York
.
20.
Fisher
,
R. A.
,
1925
, “
Theory of Statistical Estimation
,”
Math. Proc. Camb. Philos. Soc.
,
22
(
5
), pp.
700
725
.
21.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
22.
Petersen
,
K. B.
, and
Pedersen
,
M. S.
,
2012
, “
The Matrix Cookbook
,” Technical University of Denmark, https://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf
23.
Fulayter
,
R. D.
,
2004
, “
An Experimental Investigation of Resonant Response of Mistuned Fan and Compressor Rotors Utilizing NSMS
,” Ph.D. thesis,
Purdue University
,
West Lafayette, IN
.
24.
Castanier
,
M. P.
,
Óttarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.
25.
Choi
,
Y. S.
,
Key
,
N.
, and
Fleeter
,
S.
,
2011
, “
Vane Clocking Effects on the Resonant Response of an Embedded Rotor
,”
J. Propul. Power
,
27
(
1
), pp.
71
77
.
You do not currently have access to this content.