Abstract

A 15% increase in thermal efficiency at medium pressure ratios is promised by rotating detonation engine technology over conventional Joule–Bryton cycles. A supersonic inlet turbine is a viable option to extract substantial work from the highly fluctuating and supersonic flow delivered by the detonating combustor. However, an additional unstarting mechanism based on the generation of a collective shock from the coalescence of leading-edge bow-shock waves further restricts the available design space. First, the effect of unsteady inlet conditions with variable frequency, amplitude, and mean value on collective shock generation is investigated. Then, a fast and cost-effective tool was developed and verified to predict bow-shock wave motion from a prescribed inlet Mach trend; the parameters of the transfer function were estimated with a classical identification method based on a step-response computational fluid dynamics (CFD) simulation. The model was employed to rapidly calculate the maximum amplitude of fluctuations accepted by the supersonic blade row for each frequency and average inlet Mach number. Finally, the influence of the inlet geometric angle, pitch to leading-edge thickness ratio, and static temperature on the model parameters is studied. The preliminary observations of the parametric analysis were confirmed by the rigorous quantitative approach of a global sensitivity analysis based on Sobol sensitivity indices.

References

1.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.
2.
Jones
,
S. M.
, and
Paxson
,
D. E.
,
2013
, “
Potential Benefits to Commercial Propulsion Systems From Pressure Gain Combustion
,”
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Joint Propulsion Conferences
,
San Jose, CA
,
July 14–17
.
3.
Wintenberger
,
E.
, and
Shepherd
,
J. E.
,
2006
, “
Thermodynamic Cycle Analysis for Propagating Detonations
,”
J. Propul. Power
,
22
(
3
), pp.
694
698
.
4.
Frolov
,
S. M.
,
Dubrovskii
,
A. V.
, and
Ivanov
,
V. S.
,
2013
, “
Three-Dimensional Numerical Simulation of Operation Process in Rotating Detonation Engine
,”
Prog. Propul. Phys.
,
4
, pp.
467
488
.
5.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.
6.
Strakey
,
P.
,
Ferguson
,
D.
,
Sisler
,
A.
, and
Nix
,
A.
,
2016
, “
Computationally Quantifying Loss Mechanisms in a Rotating Detonation Engine
,”
54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum
,
San Diego, CA
,
Jan. 4–8
.
7.
Claflin
,
S.
,
Sonwane
,
S.
,
Lynch
,
E.
, and
Stout
,
J.
,
2014
, “
Recent Advances in Power Cycles Using Rotating Detonation Engines With Subcritical and Supercritical CO2
,”
4th International Symposium—Supercritical CO2 Power Cycles
,
Pittburgh, PA
,
Sept. 9–10
.
8.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.
9.
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2017
, “
Unsteady Performance of Rotating Detonation Engines With Different Exhaust Nozzles
,”
J. Propul. Power
,
33
(
1
), pp.
121
130
.
10.
Braun
,
J.
,
Paniagua
,
G.
, and
Ferguson
,
D.
,
2021
, “
Aero-Thermal Characterization of Accelerating and Diffusing Passages Downstream of Rotating Detonation Combustors
,” ASME Turbo Expo 2021, Paper No. GT2021-59111.
11.
Paniagua
,
G.
,
Iorio
,
M. C.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
12.
Mushtaq
,
N.
,
Colella
,
G.
, and
Gaetani
,
P.
,
2022
, “
Design and Parametric Analysis of a Supersonic Turbine for Rotating Detonation Engine Applications
,”
Int. J. Turbomach. Propul. Power
,
7
(
1
), pp.
1
24
.
13.
Mushtaq
,
N.
,
Persico
,
G.
, and
Gaetani
,
P.
,
2023
, “
The Role of Endwall Shape Optimization in the Design of Supersonic Turbines for Rotating Detonation Engines
,”
ASME J. Turbomach.
,
145
(
8
), p.
081015
.
14.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031501
.
15.
Shen
,
D.
,
Cheng
,
M.
,
Wu
,
K.
,
Sheng
,
Z.
, and
Wang
,
J.
,
2022
, “
Effects of Supersonic Nozzle Guide Vanes on the Performance and Flow Structures of a Rotating Detonation Combustor
,”
Acta Astronaut.
,
193
, pp.
90
99
.
16.
Bach
,
E.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2019
, “
Influence of Nozzle Guide Vane Orientation Relative to RDC Wave Direction
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
.
17.
Starken
,
H.
,
Yongxing
,
Z.
, and
Schreiber
,
H.-A.
,
1984
, “
Mass Flow Limitation of Supersonic Blade Rows Due to Leading Edge Blockage
,”
ASME 1984 International Gas Turbine Conference and Exhibit
,
Amsterdam, The Netherlands
,
June 4–7
.
18.
Kantrowitz
,
A.
, and
Donaldson
,
C.
,
1945
, “
Preliminary Investigation of Supersonic Diffusers
,” NACA Wartime Reports.
19.
Boiko
,
V. M.
,
Klinkov
,
K. V.
, and
Poplavskii
,
S. V.
,
2004
, “
Collective Bow Shock Ahead of a Transverse System of Spheres in a Supersonic Flow Behind a Moving Shock Wave
,”
Fluid Dyn.
,
39
(
2
), pp.
330
338
.
20.
Mushtaq
,
N.
, and
Gaetani
,
P.
,
2023
, “
Understanding and Modeling Unstarting Phenomena in a Supersonic Inlet Cascade
,”
Phys. Fluids
,
35
(
10
), p.
106101
.
21.
Sod
,
G. A.
,
1977
, “
A Numerical Study of a Converging Cylindrical Shock
,”
J. Fluid Mech.
,
83
(
4
), pp.
785
794
.
22.
Settles
,
G. S.
, and
Dodson
,
L. J.
,
1991
, “
Hypersonic Shock/Boundary-Layer Interaction Database
,”
NASA Contractor Report 177638
,
Pennsylvania State University
.
23.
Settles
,
G.
, and
Dodson
,
L.
,
1994
, “
Hypersonic Shock/Boundary-Layer Interaction Database: New and Corrected Data
,” Pennsylvania State Univ. Report.
24.
Druguet
,
M. C.
, and
Zeitoun
,
D. E.
,
2003
, “
Influence of Numerical and Viscous Dissipation on Shock Wave Reflections in Supersonic Steady Flows
,”
Comput. Fluids
,
32
(
4
), pp.
515
533
.
25.
Clark
,
J. P.
, and
Grover
,
E. A.
,
2006
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), pp.
740
749
.
26.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
27.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Comput. Fluids
,
149
, pp.
31
40
.
28.
Goldman
,
L. J.
, and
Vanco
,
M. R.
,
1971
, “
Computer Program for Design of Two-Dimensional Sharp-Edged-Throat Supersonic Nozzle With Boundary-Layer Correction
,” NASA.
29.
Nordeen
,
C.
,
2013
, “
Thermodynamics of a Rotating Detonation Engine
,”
Ph.D. thesis, University of Connecticut
,
Storrs, CT
.
30.
Shank
,
J.
,
King
,
P.
,
Karnesky
,
J.
,
Schauer
,
F.
, and
Hoke
,
J.
,
2012
, “
Development and Testing of a Modular Rotating Detonation Engine
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings
,
Nashville, TN
,
Jan. 9–12
.
31.
DeBarmore
,
N.
,
King
,
P.
,
Schauer
,
F.
, and
Hoke
,
J.
,
2013
, “
Nozzle Guide Vane Integration Into Rotating Detonation Engine
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings
,
Grapevine, TX
,
Jan. 7–10
.
32.
Pullan
,
G.
, and
Adamczyk
,
J. J.
,
2017
, “
Filtering Mixing Planes for Low Reduced Frequency Analysis of Turbomachines
,”
ASME J. Turbomach.
,
139
(
9
), p.
091009
.
33.
Bruce
,
P. J. K.
, and
Babinsky
,
H.
,
2008
, “
Unsteady Shock Wave Dynamics
,”
J. Fluid Mech.
,
603
, pp.
463
473
.
34.
Chen
,
L.
,
Li
,
J.
, and
Ding
,
R.
,
2011
, “
Identification for the Second-Order Systems Based on the Step Response
,”
Math. Comput. Modell.
,
53
(
5
), pp.
1074
1083
.
35.
Pagendarm
,
H.-G.
, and
Seitz
,
B.
,
1992
, “
An Algorithm for Detection and Visualization of Discontinuities in Scientific Data Fields Applied to Flow Data With Shock Waves
,” III. Eurographics Workshop in Visualization in Scientific Computing,
Viareggio, Italy
, Apr. 27–29.
36.
Moeckel
,
W. E.
,
1949
, “
Approximate Method for Predicting Form and Location of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies
,” NACA Technical Note.
37.
Tolstov
,
G. P.
,
2012
,
Fourier Series
,
Dover Publications
,
Mineola, New York
.
38.
Nise
,
N. S.
,
2020
,
Control Systems Engineering
, 6th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Ghanem
,
R.
,
Higdon
,
D.
, and
Owhadi
,
H.
,
2017
,
Handbook of Uncertainty Quantification
,
Springer Cham
,
Berlin, Germany
.
40.
Crestaux
,
T.
,
Le Maître
,
O.
, and
Martinez
,
J.-M.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.
41.
Hadigol
,
M.
, and
Doostan
,
A.
,
2018
, “
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
382
407
.
42.
Pati
,
Y. C.
,
Rezaiifar
,
R.
, and
Krishnaprasad
,
P. S.
,
1993
, “
Orthogonal Matching Pursuit: Recursive Function Approximation With Applications to Wavelet Decomposition
,”
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
,
Pacific Grove, CA
,
Nov. 1-3
, Vol. 1, pp.
40
44
.
43.
Stefano
,
M.
, and
Bruno
,
S.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in Matlab
,”
The 2nd International Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2014)
,
Liverpool, UK
,
July 13–16
.
44.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
.
45.
van Buuren
,
R.
,
Kuerten
,
J. G. M.
,
Geurts
,
B. J.
, and
Zandbergen
,
P. J.
,
1998
, “
Time Accurate Simulations of Supersonic Unsteady Flow
,”
Sixteenth International Conference on Numerical Methods in Fluid Dynamics
,
Bruneau
,
C.-H.
ed.,
Springer
,
Berlin
, pp.
326
331
.
46.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
.
You do not currently have access to this content.