Abstract

High efficiency and wide stability at variable speeds are equally important to the design and operation of multistage axial flow compressors. However, published research works on three-dimensional design optimization of compressors are so far mainly limited to a single blade row or stage at design speed due to the curse of dimensionality. Moreover, optimization of variable inlet guide vanes (IGV)/stators for off-design operations is carried out by using a rapid but low-fidelity prediction tool and is generally independent of design optimization of blade geometry. To tackle these issues, a three-dimensional holistic design and adjustment optimization method is developed in which both three-dimensional blade geometry and variable IGV/stators are optimized simultaneously for better efficiency and stability at design and off-design conditions. Metamodel-interpreted data mining method and adaptive infilling strategy are used respectively to enhance the capability of the metamodeling and optimization. The developed method is then applied to a modern highly loaded 3.5-stage transonic axial flow compressor at both design and part-design speeds. The results show that the stall margin is extended from 8.23% to 19.65% at 70% design speed while peak efficiency is slightly improved at design speed. The flow mechanisms responsible for the efficiency enhancement at design speed are mainly associated with the reduced total pressure loss in stators as well as inter- and intra-stage loading redistribution. The stability enhancement at 70% design speed is mainly achieved by loading the front blade rows while unloading the limiting rear blade row through variable IGV/stators adjustment. The developed holistic design and adjustment optimization method with the aid of metamodel-interpreted data mining is of great application value for the design and adjustment of advanced multistage axial flow compressors.

References

1.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
2.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
Harlow, Essex, UK
.
3.
Oyama
,
A.
,
Liou
,
M. S.
, and
Obayashi
,
S.
,
2004
, “
Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier-Stokes Solver
,”
J. Propul. Power
,
20
(
4
), pp.
612
619
.
4.
Shahpar
,
S.
,
2010
, “
High Fidelity Multi-Stage Design Optimisation of Multi-Stage Turbine Blades Using a Mid-Range Approximate Method (MAM)
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
,
TX, Sept. 13-15
,
p. 9367
.
5.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2017
, “
Novel Compressor Blade Shaping Through a Free-Form Method
,”
ASME J. Turbomach.
,
139
(
8
), p.
081002
.
6.
Wu
,
L.
,
Kim
,
J. W.
,
Wilson
,
A. G.
, and
Shahpar
,
S.
,
2022
, “
Automatic Design Optimization of a Transonic Compressor Rotor for Improving Aeroacoustic and Aerodynamic Performance
,”
ASME J. Turbomach.
,
144
(
8
), p.
081016
.
7.
Lopez
,
D. I.
,
Ghisu
,
T.
, and
Shahpar
,
S.
,
2022
, “
Global Optimization of a Transonic Fan Blade Through AI-Enabled Active Subspaces
,”
ASME J. Turbomach.
,
144
(
1
), p.
011013
.
8.
Siller
,
U.
,
Voß
,
C.
, and
Nicke
,
E.
,
2009
, “
Automated Multidisciplinary Optimization of a Transonic Axial Compressor
,”
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 5–8
,
p. 863
.
9.
Aulich
,
M.
, and
Siller
,
U.
,
2011
, “
High-Dimensional Constrained Multiobjective Optimization of a Fan Stage
,”
Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
1185
1196
.
10.
Jaron
,
R.
,
Moreau
,
A.
,
Guérin
,
S.
,
Enghardt
,
L.
,
Lengyel
,
T.
,
Otten
,
T.
, and
Nicke
,
E.
,
2022
, “
Multidisciplinary Design Optimization of a Low-Noise and Efficient Next-Generation Aero-Engine Fan
,”
ASME J. Turbomach.
,
144
(
1
), p.
011004
.
11.
Baert
,
L.
,
Beaucaire
,
P.
,
Leborgne
,
M.
,
Sainvitu
,
C.
, and
Lepot
,
I.
,
2017
, “
Tackling Highly Constrained Design Problems: Efficient Optimisation of a Highly Loaded Transonic Compressor
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
V02CT47A017
.
12.
Baert
,
L.
,
Dumeunier
,
C.
,
Leborgne
,
M.
,
Sainvitu
,
C.
, and
Lepot
,
I.
,
2018
, “
Agile SBO Framework Exploiting Multisimulation Data: Optimising Efficiency and Stall Margin of a Transonic Compressor
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–5
,
V02DT46A019
.
13.
Baert
,
L.
,
Chérière
,
E.
,
Sainvitu
,
C.
,
Lepot
,
I.
,
Nouvellon
,
A.
, and
Leonardon
,
V.
,
2020
, “
Aerodynamic Optimization of the Low-Pressure Turbine Module: Exploiting Surrogate Models in a High-Dimensional Design Space
,”
ASME J. Turbomach.
,
142
(
3
), p.
031005
.
14.
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2010
, “
Multi-Objective Optimization Design Method for Tandem Compressor Cascade at Design and Off Design Conditions
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
785
796
.
15.
Lei
,
F.
,
Zhang
,
X. W.
,
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2022
, “
Three-Dimensional Multi-Objective Design Optimization of a 6.5-Stage Axial Flow Compressor Blades With Lean and Twist
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, The Netherlands
,
June 13–17
,
V10AT29A036
.
16.
Zhang
,
X. W.
,
Ju
,
Y. P.
,
Li
,
Z.
,
Liu
,
F.
, and
Zhang
,
C. H.
,
2023
, “
Metamodel-Interpreted Data Mining for Stability and Efficiency Enhancement of Multi-Stage Axial Flow Compressors
,”
ASME J. Turbomach.
,
145
(
4
), p.
041001
.
17.
Luo
,
C.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
A Study on Multidisciplinary Optimization of an Axial Compressor Blade Based on Evolutionary Algorithms
,”
ASME J. Turbomach.
,
134
(
5
), p.
054501
.
18.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Research on Metamodel-Based Global Design Optimization and Data Mining Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092604
.
19.
Okui
,
H.
,
Verstraete
,
T.
,
Van den Braembussche
,
R. A.
, and
Alsalihi
,
Z.
,
2013
, “
Three-Dimensional Design and Optimization of a Transonic Rotor in Axial Flow Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031009
.
20.
Joly
,
M.
,
Sarkar
,
S.
, and
Mehta
,
D.
,
2019
, “
Machine Learning Enabled Adaptive Optimization of a Transonic Compressor Rotor With Precompression
,”
ASME J. Turbomach.
,
141
(
5
), p.
031005
.
21.
Hill
,
P. G.
, and
Peterson
,
C. R.
,
1992
,
Mechanics and Thermodynamics of Propulsion
,
Addison Wesley
,
New York
.
22.
Sun
,
J.
, and
Elder
,
R.
,
1998
, “
Numerical Optimization of a Stator Vane Setting in Multistage Axial-Flow Compressors
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
212
(
4
), pp.
247
259
.
23.
Gallar
,
L.
,
Arias
,
M.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2009
, “
Compressor Variable Geometry Schedule Optimisation Using Genetic Algorithms
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
425
434
.
24.
Yang
,
J.
,
Zhang
,
M.
,
Peng
,
C.
,
Ferlauto
,
M.
, and
Liu
,
Y.
,
2021
, “
Stator Re-Stagger Optimization in Multistage Axial Compressor
,”
Propuls. Power Res.
,
10
(
2
), pp.
107
117
.
25.
Kim
,
S.
,
Kim
,
D.
,
Son
,
C.
,
Kim
,
K.
,
Kim
,
M.
, and
Min
,
S.
,
2015
, “
A Full Engine Cycle Analysis of a Turbofan Engine for Optimum Scheduling of Variable Guide Vanes
,”
Aerosp. Sci. Technol.
,
47
, pp.
21
30
.
26.
Reitenbach
,
S.
,
Schnös
,
M.
,
Becker
,
R.
, and
Otten
,
T.
,
2015
, “
Optimization of Compressor Variable Geometry Settings Using Multi-Fidelity Simulation
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
,
p. V02CT45A010
.
27.
Li
,
B.
,
Gu
,
C.
,
Li
,
X.
, and
Liu
,
T.
,
2016
, “
Numerical Optimization for Stator Vane Settings of Multi-Stage Compressors Based on Neural Networks and Genetic Algorithms
,”
Aerosp. Sci. Technol.
,
52
, pp.
81
94
.
28.
Burlaka
,
M.
, and
Moroz
,
L.
,
2023
, “
Axial Compressor Map Generation Leveraging Autonomous Self-Training Artificial Intelligence
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p.
011001
.
29.
Zheng
,
X.
, and
Li
,
Z.
,
2017
, “
Blade-End Treatment to Improve the Performance of Axial Compressors: An Overview
,”
Prog. Aerosp. Sci.
,
88
, pp.
1
14
.
30.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Inference
,
134
(
1
), pp.
268
287
.
31.
Zhang
,
X. W.
,
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2022
, “
Geometry Scaling Technique and Application to Aerodynamic Redesign of Multi-Stage Transonic Axial-Flow Compressors
,”
Aerosol Sci. Technol.
,
121
(
10
), p.
107303
.
32.
Wirth
,
R.
, and
Hipp
,
J.
,
2000
, “
CRISP-DM: Towards a Standard Process Model for Data Mining
,”
Proceedings of the Fourth International Conference on the Practical Applications of Knowledge Discovery and Data Mining
,
Manchester, UK
,
Apr. 11–13
, pp.
29
39
.
33.
Martinez-Plumed
,
F.
,
Contreras-Ochando
,
L.
,
Ferri
,
C.
,
Hernandez-Orallo
,
J.
,
Kull
,
M.
,
Lachiche
,
N.
,
Ramirez-Quintana
,
M. J.
, and
Flach
,
P.
,
2021
, “
CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories
,”
IEEE Trans. Knowl. Data Eng.
,
33
(
8
), pp.
3048
3061
.
34.
Qin
,
R. H.
,
Ju
,
Y. P.
,
Spence
,
S.
, and
Zhang
,
C. H.
,
2021
, “
Metamodel-Driven Data Mining Model to Support Three-Dimensional Design of Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
143
(
12
), p.
121013
.
35.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
,
pp. 758-794
.
36.
Lundberg
,
S. M.
,
Erion
,
G.
,
Chen
,
H.
,
DeGrave
,
A.
,
Prutkin
,
J. M.
,
Nair
,
B.
,
Katz
,
R.
,
Himmelfarb
,
J.
,
Bansal
,
N.
, and
Lee
,
S. I.
,
2020
, “
From Local Explanations to Global Understanding With Explainable AI for Trees
,”
Nat. Mach. Intell.
,
2
(
1
), pp.
56
67
.
37.
NUMECA International
,
2013
,
User Manual-FINETM/Turbo v9.0
,
NUMECA International
,
Brussels, Belgium
.
38.
Cheng
,
R.
,
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
,
2016
, “
A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
,”
IEEE Trans. Evol. Comput.
,
20
(
5
), pp.
773
791
.
39.
Chugh
,
T.
,
Jin
,
Y.
,
Miettinen
,
K.
,
Hakanen
,
J.
, and
Sindhya
,
K.
,
2018
, “
A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization
,”
IEEE Trans. Evol. Comput.
,
22
(
1
), pp.
129
142
.
40.
Jin
,
Y.
,
Wang
,
H.
,
Chugh
,
T.
,
Guo
,
D.
, and
Miettinen
,
K.
,
2019
, “
Data-Driven Evolutionary Optimization: An Overview and Case Studies
,”
IEEE Trans. Evol. Comput.
,
23
(
3
), pp.
442
458
.
41.
Garud
,
S. S.
,
Karimi
,
I. A.
, and
Kraft
,
M.
,
2017
, “
Design of Computer Experiments: A Review
,”
Comput. Chem. Eng.
,
106
, pp.
71
95
.
42.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part II: Low and High-Speed Designs and Test Verification
,”
ASME J. Turbomach.
,
124
(
4
), pp.
533
541
.
43.
Biollo
,
R.
, and
Benini
,
E.
,
2013
, “
Recent Advances in Transonic Axial Compressor Aerodynamics
,”
Prog. Aerosp. Sci.
,
56
, pp.
1
18
.
44.
Dickens
,
T.
, and
Day
,
I.
,
2010
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
.
45.
Lopez
,
D. I.
,
Ghisu
,
T.
,
Kipouros
,
T.
,
Shahpar
,
S.
, and
Wilson
,
M.
,
2022
, “
Extending Highly Loaded Axial Fan Operability Range Through Novel Blade Design
,”
ASME J. Turbomach.
,
144
(
12
), p.
121009
.
46.
Lefas
,
D.
, and
Miller
,
R. J.
,
2022
, “
Transonic Relief in Fans and Compressors
,”
ASME J. Turbomach.
,
144
(
5
), p.
051001
.
47.
Benini
,
E.
, and
Biollo
,
R.
,
2007
, “
Aerodynamics of Swept and Leaned Transonic Compressor Rotors
,”
Appl. Energy
,
84
(
10
), pp.
1012
1027
.
48.
McNulty
,
G. S.
,
Decker
,
J. J.
,
Beacher
,
B. F.
, and
Khalid
,
S. A.
,
2004
, “
The Impact of Forward Swept Rotors on Tip Clearance Flows in Subsonic Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
445
454
.
49.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
50.
Yamada
,
K.
,
Furukawa
,
M.
,
Tamura
,
Y.
,
Saito
,
S.
,
Matsuoka
,
A.
, and
Nakayama
,
K.
,
2017
, “
Large-Scale Detached-Eddy Simulation Analysis of Stall Inception Process in a Multistage Axial Flow Compressor
,”
ASME J. Turbomach.
,
139
(
7
), p.
071002
.
You do not currently have access to this content.