Abstract

Blade surface roughness could significantly affect the aerodynamic performance of compressors. To explore the influence of roughness magnitude and location on blade performance, experiments were conducted in a low-speed linear compressor cascade with controlled diffusion airfoils (CDA). A part-span roughness method was employed in the experiment to maintain the axial velocity–density ratio (AVDR) during the change of blade roughness magnitudes and locations. Five blade surface local roughness schemes, including the leading-edge, the fore- and aft-part of the suction surface, and the pressure surface, which were determined based on geometry sensitivity analysis, were investigated with the variation of the surface roughness magnitude between Ra = 3.1 μm to 18.8 μm. Cascade inlet and outlet flowfields and the blade surface static pressure distributions were measured, which could help to distinguish the change of blade performance characteristics and even blade surface boundary layer development state. A critical roughness effect was found, and significant blade loss increment and available incidence range reduction appear at super-critical roughness states. At the measured maxi-roughness condition, 28.4% loss increase and 41.2% incidence range reduction were reached.

References

1.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.
2.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
3.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
4.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
5.
Schlichting
,
H.
,
1937
,
Experimental Investigation of the Problem of Surface Roughness
,
NACA-TM-823
,
Washington
.
6.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.
7.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance
,”
ASME. J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.
8.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2013
, “
Performance Evaluation of Nonuniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.
9.
Chen
,
S.
,
Sun
,
S.
,
Xu
,
H.
,
Zhang
,
L.
,
Wang
,
S.
, and
Zhang
,
T.
,
2013
, “
Influence of Local Surface Roughness of Rotor Blade on Performance of an Axial Compressor Stage
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, p. V06AT35A015.
10.
Sandeep
,
M. M.
,
Kuchana
,
V.
, and
Liu
,
J.
,
2022
, “
Numerical Prediction of Surface Roughness Effect on the Performance of Internal Channels
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, Netherlands
,
June 13–17
, p. V06BT13A018.
11.
Karabulut
,
U. C.
,
Özdemir
,
Y. H.
, and
Barlas
,
B.
,
2022
, “
Numerical Investigation of the Effect of Surface Roughness on the Viscous Resistance Components of Surface Ships
,”
J. Mar. Sci. Appl.
,
21
(
3
), pp.
71
82
.
12.
Yassin
,
K.
,
Kassem
,
H.
,
Stoevesandt
,
B.
,
Klemme
,
T.
, and
Peinke
,
J.
,
2022
, “
Numerical Simulation of Roughness Effects of Ice Accretion on Wind Turbine Airfoils
,”
Energies
,
15
(
21
), pp.
8145
.
13.
Bammert
,
K.
, and
Woelk
,
G. U.
,
1980
, “
The Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
J. Eng. Power
,
102
(
2
), pp.
283
287
.
14.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.
15.
Elrod
,
W. C.
,
King
,
P. I.
, and
Poniatowski
,
E. M.
,
1990
, “
Effects of Surface Roughness, Freestream Turbulence, and Incidence Angle on the Performance of a 2-D Compressor Cascade
,”
Proceedings of the ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
,
Brussels, Belgium
,
June 11–14
, p. V001T01A061.
16.
Koch
,
C. C.
, and
Smith
,
L. H.
, Jr.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
J. Eng. Power
,
98
(
3
), pp.
411
424
.
17.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
,
2000
, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
122
(
3
), pp.
416
424
.
18.
Back
,
S. C.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2010
, “
Effect of Surface Roughness Location and Reynolds Number on Compressor Cascade Performance
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
121
128
.
19.
Back
,
S. C.
,
Jeong
,
I. C.
,
Sohn
,
J. L.
, and
Song
,
S. J.
,
2009
, “
Influence of Surface Roughness on the Performance of a Compressor Blade in a Linear Cascade: Experiment and Modeling
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
239
247
.
20.
Chen
,
S.-W.
,
Xu
,
H.
,
Wang
,
S.-T.
, and
Wang
,
Z.-Q.
,
2014
, “
Experimental Research of Surface Roughness Effects on Highly-Loaded Compressor Cascade Aerodynamics
,”
J. Therm. Sci.
,
23
(
4
), pp.
307
314
.
21.
Gao
,
L.
,
Wang
,
Z.-N.
,
Geng
,
S.-J.
,
Zhang
,
H.-W.
, and
Nie
,
C.-Q.
,
2016
, “
Experimental Study on the Effect of Roughness on Compressor Cascade Loss Characteristics (in Chinese)
,”
J. Propul. Technol.
,
37
(
7
), pp.
1263
1270
.
22.
Wang
,
M.
,
Yang
,
C.
,
Li
,
Z.
,
Zhao
,
S.
,
Zhang
,
Y.
, and
Lu
,
X.
,
2021
, “
Effects of Surface Roughness on the Aerodynamic Performance of a High Subsonic Compressor Airfoil at Low Reynolds Number
,”
Chin. J. Aeronaut.
,
34
(
3
), pp.
71
81
.
23.
Kumaran
,
R. S.
,
Kamble
,
S.
,
Swamy
,
K. M. M.
,
Nagpurwala
,
Q. H.
, and
Bhat
,
A.
,
2015
, “
Effect of Axial Velocity Density Ratio on the Performance of a Controlled Diffusion Airfoil Compressor Cascade
,”
Int. J. Turbo Jet Eng.
,
32
(
4
), pp.
305
317
.
24.
Song
,
B.
, and
Ng
,
W.
,
2004
, “
Influence of Axial Velocity Density Ratio in Cascade Testing of Supercritical Compressor Blades
,”
Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Fort Landerdale, FL
,
July 11–14
.
25.
Liu
,
B.
,
Qiu
,
Y.
,
An
,
G.
, and
Yu
,
X.
,
2020
, “
Utilization of Zonal Method for Five-Hole Probe Measurements of Complex Axial Compressor Flows
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061504
.
26.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of Asme Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.
27.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
28.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2014
, “
The Impact of Geometric Variation on Compressor Two-Dimensional Incidence Range
,”
ASME J. Turbomach.
,
137
(
2
), p.
021007
.
29.
Liu
,
B.
,
Liu
,
J.
,
Yu
,
X.
,
Meng
,
D.
, and
Shi
,
W.
,
2020
, “
Influence Mechanisms of Manufacture Variations on Supersonic/Transonic Blade Aerodynamic Performances
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Online
,
Sept. 21–25
, p. V02AT32A054.
30.
Yu
,
X.
,
Li
,
M.
,
An
,
G.
, and
Liu
,
B.
,
2020
, “
A Coupled Effect Model of Two-Position Local Geometric Deviations on Subsonic Blade Aerodynamic Performance
,”
Appl. Sci.
,
10
(
24
), pp.
8976
.
31.
Liu
,
B.
,
Liu
,
J.
,
Yu
,
X.
, and
An
,
G.
,
2022
, “
A Novel Decomposition Method for Manufacture Variations and the Sensitivity Analysis on Compressor Blades
,”
Appl. Sci.
,
9
(
10
), pp.
542
.
32.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
John Wiley & Sons
,
New York
.
33.
Starke
,
J.
,
1981
, “
The Effect of the Axial Velocity Density Ratio on the Aerodynamic Coefficients of Compressor Cascades
,”
J. Eng. Power
,
103
(
1
), pp.
210
219
.
34.
Hutchings
,
J.
, and
Hall
,
C. A.
,
2021
, “
The Effects of Reynolds Number on the Stall and Pre-Stall Behavior of Compact Axial Compressors
,”
ASME J. Turbomach.
,
143
(
12
), p.
121014
.
35.
Wassell
,
A. B.
,
1968
, “
Reynolds Number Effects in Axial Compressors
,”
J. Eng. Power
,
90
(
2
), pp.
149
156
.
36.
Pollard
,
D.
, and
Gostelow
,
J. P.
,
1967
, “
Some Experiments at Low Speed on Compressor Cascades
,”
J. Eng. Power
,
89
(
3
), pp.
427
436
.
37.
Im
,
J. H.
,
Shin
,
J. H.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2013
, “
Effect of Leading Edge Roughness and Reynolds Number on Compressor Profile Loss
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, p. V06AT35A034.
You do not currently have access to this content.