Abstract

In order to maximize the pressure ratio and efficiency, compressor designers have tried several unconventional design approaches. Tandem blading is one such unconventional design that promises a higher pressure ratio per stage through a higher diffusion factor. The nozzle shape created between the forward and aft blades of a tandem configuration acts as a passive boundary layer control mechanism. The boundary layer growth over the aft rotor is therefore effectively controlled with the help of this gap-nozzle flow. The flow complexity is likely to increase in the case of a tandem rotor due to the twin leakage vortices, twin wake regions, and their interaction with the hub and casing boundary layers. Modern compressor blades are often designed with three-dimensional blade techniques such as sweep, lean, dihedral, end bent, etc., to reduce the various losses and achieve optimum performance. However, to the best of the author’s knowledge, the effect of 3D blade designs on the performance of tandem rotors has not been fully explored so far. A comprehensive numerical investigation is undertaken to understand the effect of 3D designs on the performance of tandem blades. Axial sweep and dihedral failed to improve the performance of the tandem rotor. Significant improvement in the stall margin is observed for the forward chordwise-swept and negative lean tandem rotors and is largely attributed to lower tip incidence. The performance penalty of the forward-swept and negatively leaned cases can be reduced by integrating compound or variable lean and sweep into the design.

References

1.
Brent
,
J. A.
, and
Clemmons
,
D. R.
,
1974
, “Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors,” NASA CR-134713.
2.
Bammert
,
K.
, and
Beelte
,
H.
,
1980
, “
Investigations of an Axial Flow Compressor With Tandem Cascades
,”
J. Eng. Power
,
102
(
4
), pp.
971
977
.
3.
Hasegawa
,
H.
,
Matsuoka
,
A.
, and
Suga
,
S.
,
2003
, “
Development of a Highly Loaded Fan With Tandem Cascade
,”
41st Aerospace Sciences Meeting and Exhibit
, Paper No. AIAA 2003-1065
4.
Sakai
,
Y.
,
Matsuoka
,
A.
,
Suga
,
S.
, and
Hashimoto
,
K.
,
2003
, “
Design and Test of Transonic Compressor Rotor With Tandem Cascade
,”
Proceedings of the International Gas Turbine Congress
,
Tokyo, Japan
,
Nov. 2–7
, IGTC2003Tokyo TS-108.
5.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2021
, “
Design Methodology of a Highly Loaded Tandem Rotor and Its Performance Analysis Under Clean and Distorted Inflows
,”
Proc. IMechE: Part C: J. Mech. Eng. Sci.
,
235
(
23
), pp.
6798
6821
.
6.
Canon-Falla
,
G. A.
,
2004
, “
Numerical Investigation of the Flow in Tandem Compressor Cascades
,”
Diploma thesis
,
Departmento de Ingenieria Macanica, Universidad Nacional de Colombia, Institute of Thermal Powerplants, Vienna University of Technology
,
Vienna, Austria
.
7.
McGlumphy
,
J.
,
Ng
,
W.
,
Wellborn
,
S. R.
, and
Kempf
,
S.
,
2009
, “
Numerical Investigation of Tandem Airfoils for Subsonic Axial-Flow Compressor Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
021018
.
8.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2018
, “
Performance Evaluation of a Tandem Rotor Under Design and Off-Design Operation
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery
,
Oslo, Norway
, Paper No. V02AT39A009.
9.
Schneider
,
T.
, and
Kožulović
,
D.
,
2013
, “
Flow Characteristics of Axial Compressor Tandem Cascades at Large Off-Design Incidence Angles
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 6A: Turbomachinery
,
San Antonio, TX
, Paper No. V06AT35A011.
10.
Heinrich
,
A.
,
Tiedemann
,
C.
, and
Peitsch
,
D.
,
2017
, “
Experimental Investigations of the Aerodynamics of Highly Loaded Tandem Vanes in a High-Speed Stator Cascade
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery
,
Charlotte, NC
, Paper No. V02AT39A005.
11.
Wilkosz
,
B.
,
Schmidt
,
J.
,
Guenther
,
C.
,
Schwarz
,
P.
,
Jeschke
,
P.
, and
Smythe
,
C.
,
2014
, “
Numerical and Experimental Comparison of a Tandem and Single Vane Deswirler Used in an Aero Engine Centrifugal Compressor
,”
ASME J. Turbomach.
,
136
(
4
), p.
041005
.
12.
Mao
,
X.
,
Liu
,
B.
, and
Zhang
,
B.
,
2019
, “
Hub Clearance Effects of a Cantilevered Tandem Stator on the Performance and Flow Behaviors in a Small-Scale Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
91
, pp.
219
230
.
13.
Konrath
,
L.
,
Peitsch
,
D.
, and
Heinrich
,
A.
,
2022
, “
An Analysis of the Secondary Flow Around a Tandem Blade Under the Presence of a Tip Gap in a High-Speed Linear Compressor Cascade
,”
ASME J. Turbomach.
,
144
(
10
), p.
101003
.
14.
Xu
,
P.
,
Yu
,
X.
, and
Liu
,
B.
,
2014
, “
The Effects of Blade 3D Designs in Different Orthogonal Coordinates on the Performance of Compressor Cascades
,”
Int. J. Turbo Jet-Engines
,
31
(
4
), pp.
329
345
.
15.
Benini
,
E.
, and
Biollo
,
R.
,
2007
, “
Aerodynamics of Swept and Leaned Transonic Compressor-Rotors
,”
Appl. Energy
,
84
(
10
), pp.
1012
1027
.
16.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2002, Parts A and B
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
23
32
.
17.
Razavi
,
S. R.
,
Sammak
,
S.
, and
Boroomand
,
M.
,
2017
, “
Multidisciplinary Design and Optimizations of Swept and Leaned Transonic Rotors
,”
ASME J. Eng. Gas. Turbines Power
,
139
(
12
), p.
122601
.
18.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2017
, “
Non-Axisymmetric Stator Design for Boundary Layer Ingesting Fans
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
,
Charlotte, NC
,
Paper No.
V001T01A003.
19.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D.
,
1998
, “
Inner Workings of Aerodynamic Sweep
,”
ASME J. Turbomach.
,
120
(
3
), pp.
671
682
.
20.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part II: Low and High Speed Designs and Test Verification
,”
ASME J. Turbomach.
,
124
(
4
), pp.
533
541
.
21.
Goswami
,
S.
, and
Govardhan
,
M.
,
2016
, “
Effect of Lean on Performance of an Axial Compressor Rotor With Circumferential Casing Grooves
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2016)
.
22.
Wadia
,
A. R.
,
2010
, “Forward Swept Rotor Studies in Multistage Fans Including the Effect on Performance With Inlet Distortion, ICAS2010-4.2. 4 74.
23.
Lu
,
H.
,
Li
,
Q.
, and
Pan
,
T.
,
2018
, “
Using Forward End-Sweep to Reduce Transonic Cantilevered Stator Losses to Improve Compressor Performance
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
293
307
.
24.
Kumar
,
A.
,
John
,
J. T.
,
Chhugani
,
H.
,
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2022
, “
Aerodynamics of Sweep in a Tandem-Bladed Subsonic Axial Compressor Rotor
,”
ASME J. Fluids Eng.
,
144
(
12
), p.
121203
.
25.
Kumar
,
A.
,
John
,
J. T.
,
Kumar
,
A.
,
Chhugani
,
H.
, and
Pradeep
,
A. M.
,
2022
, “
Flow Dynamics of a Subsonic Axial Compressor Rotor With Leaned Tandem Blades
,”
Proceedings of the ASME Turbo Expo 2022
,
Rotterdam, The Netherlands
, Paper No. V10AT29A021.
26.
Kumar
,
A.
,
Chhugani
,
H.
,
More
,
S.
, and
Pradeep
,
A. M.
,
2022
, “
Effect of Differential Tip Clearance on the Performance of a Tandem Rotor
,”
ASME J. Turbomach.
,
144
(
8
), p.
081007
.
27.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2021
, “
Experimental Investigation of Tandem Rotor Under Clean and Radially Distorted Inflows
,”
Propuls. Power Res.
,
10
(
3
), pp.
247
261
.
28.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
.
You do not currently have access to this content.