Abstract

In this study, acoustic actuation was applied experimentally to massively separated flows on simplified hump geometries, which mimic the pressure distribution over high-work-and-lift low Reynolds airfoils. The acoustic excitation demonstrated significant control over flow separation, resulting in higher relative lift enhancement than standard, localized actuation techniques with similar momentum coefficients. Full-field velocity measurements were used to examine the transient behavior of the actuated flow in order to explain the physical mechanism of separation control. The velocity measurements revealed the presence of a viscous wall mode that organized the vorticity upstream of the separation point. A spatio-temporal correlation analysis found that the generation of these wall modes in the attached flow was the dominant cause of the subsequent reorganization of the separating shear layer and the change in separation dynamics. The importance of wall modes to acoustic flow control mechanism has important implications for the design of new acoustic control strategies for high-speed turbomachinery. Along these lines, the ramifications of this phenomena are explored over geometries, which are designed to approximate flow fields in high-speed turbomachinery. At the conducive Strouhal number, which scale linearly with the square root of Reynolds numbers, up to 22% lift enhancement is observed for excitation amplitudes in the range of ∼128 dB, typical to the engine environment. Of the many diverse flow control techniques, acoustics can be effectively employed in low Reynolds turbine blades, which are prone to flow separation in the off-design conditions with the ever increasing demand for higher flow turning.

References

1.
Seifert
,
A.
,
Eliahu
,
S.
,
Greenblatt
,
D.
, and
Wygnanski
,
I.
,
1998
, “
Use of Piezoelectric Actuators for Airfoil Separation Control
,”
AIAA J.
,
36
(
8
), pp.
1535
1537
.
2.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.
3.
Seifert
,
A.
, and
Pack
,
L. G.
,
1999
, “
Oscillatory Control of Separation at High Reynolds Numbers
,”
AIAA J.
,
37
(
9
), pp.
1062
1071
.
4.
Naveh
,
T.
,
Seifert
,
A.
,
Tumin
,
A.
, and
Wygnanski
,
I.
,
1998
, “
Sweep Effect on Parameters Governing Control of Separation by Periodic Excitation
,”
J Aircr
,
35
(
3
), pp.
510
512
.
5.
Greenblatt
,
D.
,
Göksel
,
B.
,
Rechenberg
,
I.
,
Schüle
,
C. Y.
,
Romann
,
D.
, and
Paschereit
,
C. O.
,
2008
, “
Dielectric Barrier Discharge Flow Control at Very Low Flight Reynolds Numbers
,”
AIAA J.
,
46
(
6
), pp.
1528
1541
.
6.
Zhang
,
W.
, and
Samtaney
,
R.
,
2015
, “
A Direct Numerical Simulation Investigation of the Synthetic Jet Frequency Effects on Separation Control of Low-Re Flow Past an Airfoil
,”
Phys. Fluids
,
27
(
5
), p.
055101
.
7.
Collins
,
F. G.
, and
Zelenevitz
,
J.
,
1975
, “
Influence of Sound upon Separated Flow Over Wings
,”
AIAA J.
,
13
(
3
), pp.
408
410
.
8.
Ahuja
,
K. K.
,
1985
, “
Some Unique Experiments on Receptivity
,”
AIAA
,
53
(
9
), pp.
1689
1699
.
9.
Rice
,
E. J.
, and
Zaman
,
K. B. M. Q.
,
1987
, “
Control of Shear Flows by Acoustic Excitation
,”
AIAA 11th Aeroacoustics Conference
,
Sunnyvale, CA
,
Oct. 19–21
.
10.
Zaman
,
K. B. M. Q.
,
1992
, “
Effect of Acoustic Excitation on Stalled Flows Over an Airfoil
,”
AIAA J.
,
30
(
6
), pp.
1492
1499
.
11.
Ahuja
,
K. K.
,
Whipkey
,
R. R.
, and
Jones
,
G. S.
,
1983
, “
Control of Turbulent Boundary Layer Flows by Sound
,”
AlAA 8th Aeroacoustics Conference.
12.
Schubauer
,
G. B.
, and
Skramstad
,
H. K.
,
1947
, “
Laminar Boundary-Layer Oscillations and Transition on a Flat Plate
,”
J. Res. Natl. Inst. Stand.
,
38
(
2
), p.
251
.
13.
Zaman
,
K. B. M. Q.
,
Bar-Sever
,
A.
, and
Mangalam
,
S. M.
,
Sep. 1987
, “
Effect of Acoustic Excitation on the Flow Over a Low-Re Airfoil
,”
J. Fluid Mech.
,
182
(
1
), p.
127
148
.
14.
Ahuja
,
K. K.
, and
Burrin
,
R. H.
,
1984
, “
Control of Flow Separation by Sound
,”
AIAA 9th Aeroacoustics Conference
,
Williamsburg, VA
,
Oct. 10–15
, pp.
1
14
.
15.
Zaman
,
K. B. M. Q.
,
McKinzie
,
D. J.
, and
Rumsey
,
C. L.
,
1989
, “
A Natural Low-Frequency Oscillation of the Flow Over an Airfoil Near Stalling Conditions
,”
202
(
403
), pp.
403
442
.
16.
Zaman
,
K. B. M. Q.
, and
McKinzie
,
D. J.
,
1991
, “
Control of Laminar Separation Over Airfoils by Acoustic Excitation
,”
AIAA J.
,
29
(
7
), pp.
1075
1083
.
17.
Nishioka
,
M.
,
Asai
,
M.
, and
Yoshida
,
S.
,
1990
, “
Control of Flow Separation by Acoustic Excitation
,”
AIAA J.
,
28
(
11
), pp.
1909
1915
.
18.
Benton
,
S.
, and
Bons
,
J. P.
,
2012
, “
The Effect of Acoustic Excitation on Boundary Layer Separation of a Highly Loaded LPT Blade
,”
Proceedings of the ASME Turbo Expo
,
Cophenhagen, Denmark
,
June 11–15
, pp.
1
11
.
19.
Bernardini
,
C.
,
Benton
,
S. I.
, and
Jeffrey
,
P. B.
,
2013
, “
The Effect of Acoustic Excitation on Boundary Layer Separation of a Highly Loaded LPT Blade
,”
ASME J. Turbomach.
,
135
(
3
), p.
051001
.
20.
Tam
,
C. K. W.
,
1981
, “
The Excitation of Tollmien-Schlichting Waves in Low Subsonic Boundary Layers by Free-Stream Sound Waves
,”
J. Fluid Mech.
,
109
, pp.
483
501
.
21.
Goldstein
,
M. E.
,
1983
, “
The Evolution of Tollmien—Schlichting Waves Near a Leading Edge
,”
J. Fluid Mech.
,
129
(
1
), pp.
443
453
.
22.
Lam
,
S. H.
, and
Rott
,
N.
,
1993
, “
Eigen-functions of Linearized Unsteady Boundary Layer Equations
,”
ASME J. Fluids Eng.
,
115
(
4
), pp.
597
602
.
23.
Goldstein
,
M. E.
,
1985
, “
Scattering of Acoustic Waves Into Tollmien-Schlichting Waves by Small Streamwise Variations in Surface Geometry
,”
J. Fluid Mech.
,
154
, pp.
509
529
.
24.
Pröbsting
,
S.
, and
Yarusevych
,
S.
,
2021
, “
Airfoil Flow Receptivity to Simulated Tonal Noise Emissions
,”
Phys. Fluids
,
33
(
4
), pp.
1
16
.
25.
Arbey
,
H.
, and
Bataille
,
J.
,
1983
, “
Noise Generated by Airfoil Profiles Placed in a Uniform Laminar Flow
,”
J. Fluid Mech.
,
134
, pp.
33
47
.
26.
Pröbsting
,
S.
, and
Yarusevych
,
S.
,
2015
, “
Laminar Separation Bubble Development on an Airfoil Emitting Tonal Noise
,”
J. Fluid Mech.
,
780
, pp.
167
191
.
27.
Bernardini
,
C.
,
Benton
,
S. I.
,
Lee
,
J. D.
,
Bons
,
J. P.
,
Chen
,
J.
, and
Martelli
,
F.
,
2014
, “
Steady VGJ Flow Control on a Highly Loaded Transonic LPT Cascade: Effects of Compressibility and Roughness
,”
Turbo Expo: Power for Land, Sea, and Air
,
Dusseldorf, Germany
,
June 16–20
, pp.
1
14
.
28.
Agarwal
,
T.
,
Stratmann
,
M.
,
Julius
,
S.
, and
Cukurel
,
B.
,
2021
, “
Exploring Applicability of Acoustic Heat Transfer Enhancement Across Various Perturbation Elements
,”
ASME J. Turbomach.
,
143
(
3
), p.
031001
.
29.
Schmitz
,
J. T.
, et al
,
2015
, “
Highly Loaded Low-Pressure Turbine: Design, Numerical, and Experimental Analysis
,”
J. Propul. Power
,
32
(
1
), pp.
142
152
.
30.
Nowak
,
H. D.
,
Luesma-Rodriguez
,
F.
,
Rahbari
,
I.
,
Clark
,
J. P.
, and
Paniagua
,
G.
,
2023
, “
Response of Separated Boundary Layers to Steady and Pulsated Flow Injection
,”
ASME J. Turbomach.
,
145
(
6
), p.
061001
.
31.
Clark
,
J.
,
Paniagua
,
G.
, and
Cukurel
,
B.
,
2023
, “
On the Development of High Lift, High Work Low-Pressure Turbines
,”
Proceedings of the ASME Turbo Expo.
32.
Gaster
,
M.
,
1967
, “
The Structure and Behaviour of Laminar Separation Bubbles
,”
Aeronaut. Res. Council Rep. Mem.
,
3595
, pp.
1
31
.
33.
Horton
,
H. P.
,
1968
,
Laminar Separation Bubbles in Two and Three Dimensional Incompressible Flow
,
Queen Mary College, London, UK
.
34.
Gaster
,
M.
,
2004
, “
Laminar Separation Bubbles
,”
IUTAM Symposium on Laminar-Turbulent Transition
,
Bangalore, India
.
35.
Diwan
,
S. S.
, and
Ramesh
,
O. N.
,
2009
, “
On the Origin of the Inflectional Instability of a Laminar Separation Bubble
,”
J. Fluid Mech.
,
629
, pp.
263
298
.
36.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1986
,
Random Data, Analysis and Measurement Procedures
,
John Wiley & Sons
,
New York
.
37.
Holman
,
J. P.
,
2011
,
Experimental Methods for Engineers
, 8th ed.,
McGraw-Hill
,
New York
.
38.
Wieneke
,
B.
,
Jul. 2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
39.
Benedict
,
L. H.
, and
Gould
,
R. D.
,
1996
, “
Towards Better Uncertainty Estimates for Turbulence Statistics
,”
Exp. Fluids
,
22
(
2
), pp.
129
136
.
40.
Dovgal
,
A. V.
,
Kozlov
,
V. V.
, and
Michalke
,
A.
,
1994
, “
Laminar Boundary Layer Separation: Instability and Associated Phenomena
,”
Prog. Aeros. Sci.
,
30
(
1
), pp.
61
94
.
41.
Lachmann
,
G. V.
,
1955
, “
Boundary Layer Control
,”
Aeronaut. J.
,
59
, pp.
163
198
.
42.
Chang
,
R. C.
,
Hsiao
,
F. B.
, and
Shyu
,
R. N.
,
1992
, “
Forcing Level Effects of Internal Acoustic Excitation on the Improvement of Airfoil Performance
,”
J. Aircraft
,
29
(
5
), pp.
823
829
.
43.
Seifert
,
A.
,
Darabi
,
A.
, and
Wygnanski
,
I.
,
1996
, “
Delay of Airfoil Stall by Periodic Excitation
,”
J. Aircr.
,
33
(
4
), pp.
691
698
.
44.
Smith
,
D. R.
,
Amitay
,
M.
,
Kibens
,
V.
,
Parekh
,
D.
, and
Glezer
,
A.
,
1998
, “
Modification of Lifting Body Aerodynamics Using Synthetic jet Actuators
,”
36th AIAA Aerospace Sciences Meeting and Exhibit.
45.
Li
,
S.
,
Luo
,
Z.
,
Deng
,
X.
,
Liu
,
Z.
,
Gao
,
T.
, and
Zhao
,
Z.
,
2022
, “
Lift Enhancement Based on Virtual Aerodynamic Shape Using a Dual Synthetic Jet Actuator
,”
Chin. J. Aeronaut.
,
35
(
12
), pp.
117
129
.
46.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2010
, “
Stability and Receptivity Characteristics of a Laminar Separation Bubble on an Aerofoil
,”
J. Fluid Mech.
,
648
, pp.
257
296
.
47.
Schoppa
,
W.
, and
Hussain
,
F.
,
2002
, “
Coherent Structure Generation in Near-Wall Turbulence
,”
J. Fluid Mech.
,
453
, pp.
57
108
.
You do not currently have access to this content.