Abstract

The radial growth of compressor discs is strongly influenced by conjugate heat transfer between conduction in the co-rotating discs and buoyancy-driven convection in the rotating fluid core between the discs. An accurate prediction of metal temperatures of these discs is an important issue in thermo-mechanical design, where blade-tip clearances must be controlled carefully to ensure safety and efficiency under all operating conditions. This paper presents an experimental study of the fluid dynamics and heat transfer in a closed rotating cavity, comparing results with theoretical models and introducing a new compressibility parameter χ. At large values of χ, where compressibility effects are significant, the air temperature approaches that of the shroud; such conditions suppress buoyancy effects and the flow in the rotating cavity becomes stratified, with convection replaced by conduction inside the fluid core. There are important practical consequences of stratification with significant differences in temperature distributions and stresses inside compressor discs. The influence of χ is also shown on the radial temperature distributions for the discs and on the shroud heat transfer correlations, which are compared qualitatively with previously published data collected where the effects of compressibility are relatively small. The experiments reveal that there is a critical value of χ where the convective heat flux to the shroud is zero. The radial distribution of disc temperature was that expected from pure conduction in a cylinder. A new heat transfer correlation based on measured shroud heat flux and the theoretical core temperature is presented. The unsteady flow characteristics in the cavity were also investigated, identifying coherent rotating structures across a range of experimental conditions. These cyclonic/anti-cyclonic vortex pairs generate the nondimensional circumferential pressure difference necessary for the radial outflow (of cold fluid) and inflow (of hot fluid) through the rotating core. The experiments show that the magnitude of these pressure variations can be correlated against Grashof number and at high values of χ the structures do not exist. The combined experimental and theoretical results will be of practical interest to engine designers and for the validation of computational models.

References

1.
Owen
,
J. M.
,
Tang
,
H.
, and
Lock
,
G. D.
,
2018
, “
Buoyancy-Induced Heat Transfer Inside Compressor Rotors: Overview of Theoretical Models
,”
Aerospace
,
5
(
1
), p.
32
.
2.
Tritton
,
D. J.
,
1988
,
Physical Fluid Dynamics
,
Oxford University Press
,
New York
.
3.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.
4.
Tang
,
H.
, and
Owen
,
J. M.
,
2018
, “
Theoretical Model of Buoyancy-Induced Heat Transfer in Closed Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032605
.
5.
Pitz
,
D. B.
,
Chew
,
J. W.
,
Marxen
,
O.
, and
Hills
,
N. J.
,
2017
, “
Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072602
.
6.
Holland
,
K. G. T.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1975
, “
Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
879
884
.
7.
Niemela
,
J. J.
,
Skrbek
,
L.
,
Sreenivasan
,
K. R.
, and
Donnelly
,
R. J.
,
2000
, “
Turbulent Convection at Very High Rayleigh Umbers
,”
Nature
,
404
(
6780
), pp.
837
840
.
8.
Grossmann
,
S.
, and
Lohse
,
D.
,
2000
, “
Scaling in Thermal Convection: A Unifying Theory
,”
J. Fluid Mech.
,
407
(
3
), pp.
27
56
.
9.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021020
.
10.
Gao
,
F.
,
Pitz
,
D. B.
, and
Chew
,
J. W.
,
2020
, “
Numerical Investigation of Buoyancy-Induced Flow in a Sealed Rapidly Rotating Disc Cavity
,”
Int J. Heat Mass Transfer
,
147
(
2
), p.
118860
.
11.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli for Different Rayleigh Numbers
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Stockholm, Sweden
,
June 2–5
, ASME 98-GT-542.
12.
Saini
,
D.
,
Cheung
,
D.
, and
Sandberg
,
R.
,
2018
, “
Direct Numerical Simulations of Centrifugal Buoyancy Induced Flow in a Closed Rotating Cavity
,”
21st Australasian Fluid Mechanics Conference
,
Adelaide, Australia
,
Dec. 10–13
.
13.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement of Heat Transfer and Flow Structures in a Closed Rotating Cavity
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer—General Interest; Internal Air Systems; Internal Cooling
,
Virtual
,
June 7–11
, GT2021-59605.
14.
Owen
,
J. M.
,
2010
, “
Thermodynamic Analysis of Buoyancy-Induced Flow in Rotating Cavities
”,
ASME J. Turbomach.
,
132
(
3
), p.
031006
.
15.
Pitz
,
D.
,
Marxen
,
O.
, and
Chew
,
J.
,
2017
, “
Onset of Convection Induced by Centrifugal Buoyancy in a Rotating Cavity
,”
J. Fluid Mech.
,
826
(
8
), pp.
484
502
.
16.
Hide
,
R.
,
1958
, “
An Experimental Study of Thermal Convection in a Rotating Fluid
,”
Philos. Trans. R. Soc. A
,
250
(
983
), pp.
441
478
.
17.
Jiang
,
H.
,
Zhu
,
X.
,
Wang
,
D.
,
Huisman
,
S. G.
, and
Sun
,
C.
,
2020
, “
Supergravitational Turbulent Thermal Convection
,”
Sci. Adv.
,
6
(
40
), p.
eabb8676
.
18.
Tang
,
H.
, and
Owen
,
J. M.
,
2022
, “
Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities
,” ASME GT2022-80477.
19.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Discs
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.
20.
Jackson
,
R.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.
21.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.
22.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E. W.
,
1994
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
23.
Tang
,
H.
, and
Owen
,
J. M.
,
2020
, “
Effect of Radiation on Heat Transfer Inside Aeroengine Compressor Rotors
,”
ASME J. Turbomach.
,
143
(
5
), p.
051005
.
24.
Pountney
,
O.
,
Patinios
,
M.
,
Tang
,
H.
,
Luberti
,
D.
,
Sangan
,
C.
,
Scobie
,
J.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Calibration of Thermopile Heat Flux Gauges Using a Physically-Based Equation
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
235
(
7
), pp.
1806
1816
.
25.
Silvey
,
S. D.
,
1975
,
Statistical Inference
,
Chapman and Hall
,
London
.
26.
Davison
,
A. C.
,
2003
,
Statistical Models
,
Cambridge University Press
,
Cambridge
.
27.
Jackson
,
R.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.
28.
Coleman
,
T. F.
, and
Li
,
Y.
,
1996
, “
An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
,
6
(
2
), pp.
418
445
.
29.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.
You do not currently have access to this content.