Abstract

The relative casing motion can greatly vary the over-tip-leakage (OTL) flow structure and aerothermal performance. The existing tip experimental research facilities including stationary linear cascade, cascade rigs with low-speed moving belt, or high-speed rotor rigs are either not capable of reproducing the high relative casing Mach number or extremely expensive and still difficult for optical measurement. This paper presents a high-speed disk rotor design that can simulate the high casing relative speed. The unique feature of this rig design concept is that it enables full optical access of the tip surface under the engine-representative OTL flow condition. In this paper, the feasibility of the design concept is demonstrated and assessed by Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD) simulation, both in component level and in whole rig system level. First-of-its-kind experimental results of spatially resolved tip heat transfer coefficient distribution at high relative casing Mach number are reported. The disk rotor rig design demonstrated in this paper can also be useful for other tip leakage flow studies.

References

1.
Chyu
,
M. K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
,
1987
, “
Heat Transfer in Shrouded Rectangular Cavities
,”
AIAA J. Thermophys. Heat Transfer
,
1
(
3
), pp.
247
252
.
2.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part II: Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
(
3
), pp.
660
667
.
3.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics—Part II: Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.
4.
Yang
,
D.
,
Yu
,
X.
, and
Feng
,
Z.
,
2010
, “
Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation
,”
ASME J. Turbomach.
,
132
(
4
), p.
041010
.
5.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2007
, “
Aero-thermal Investigation of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,” ASME Paper No. GT-2007-27957
6.
Zhou
,
C.
,
2014
, “
Aerothermal Performance of Different Tips in Transonic Turbine Cascade With End-Wall Motion
,”
J. Propul. Power
,
30
(
5
), pp.
1316
1327
.
7.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2006
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,” ASME Paper No. GT2006-90425.
8.
Acharya
,
S.
, and
Moreaux
,
L.
,
2012
, “
Numerical Study of the Flow Past a Turbine Blade Tip: Effect of Relative Motion Between Blade and Shroud
,” ASME Paper GT2012-69192.
9.
Virdi
,
A.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power
,
31
(
2
), pp.
527
536
.
10.
Zhang
,
Q.
,
O’Dowd
,
D.
,
He
,
L.
,
Oldfield
,
M.
, and
Ligrani
,
P.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
11.
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2013
, “
Numerical Simulation of Film Cooling on Rotating Blade Tips Within a High-Pressure Turbine
,” ASME Paper GT2013-94806.
12.
Acharya
,
S.
, and
Moreaux
,
L.
,
2013
, “
Numerical Study of the Flow Past a Turbine Blade Tip: Effect of Relative Motion Between Blade and Shroud
,”
ASME J. Turbomach.
,
136
(
3
), p.
031015
.
13.
De Maesschalck
,
C. D.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Vinha
,
N.
,
2014
, “
Aerothermodynamics of Tight Rotor Tip Clearance Flows in High-Speed Unshrouded Turbines
,”
Appl. Therm. Eng.
,
65
(
1-2
), pp.
343
351
.
14.
Zhu
,
D.
,
Zhang
,
Q.
,
Lu
,
S.
, and
Teng
,
J.
,
2019
, “
Relative Casing Motion Effect on Turbine Squealer Tip Cooling Performance at Tight Tip Clearance
,” Paper No. IMECE 2019-11237, Nov 2019.
15.
Dean
,
R. C.
,
1954
, “
The Influence of Tip Clearance on Boundary-Layer Flow in a Rectilinear Cascade
,” M.I.T. Gas Turbine Laboratory, Report No. 27-3.
16.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part I: Tip Gap Flow
,”
ASME J. Turbomach.
,
114
(
3
), pp.
652
659
.
17.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2003
, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
267
273
.
18.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
,
2005
, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low Speed Turbine Blade Cascade With Moving Endwall
,” ASME Paper No. GT2005-68189.
19.
Morphis
,
G.
, and
Bindon
,
J. P.
,
1988
, “
The Effects of Relative Motion, Blade Edge Radius and Gap Size on the Blade Tip Pressure Distribution in an Annular Turbine Cascade With Clearance
,” ASME Paper No. 88-GT-256.
20.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J Turbomach.
,
113
(
3
), pp.
502
507
.
21.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.
22.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2005
, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng. Part A
,
219
(
6
), pp.
421
430
.
23.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergholz
,
R. F.
, and
Vitt
,
P.
,
2006
, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine
,” ASME Paper No. GT2006-90048.
24.
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2006
, “
Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in a Low-Speed Annular Cascade—Part 2: Tip and Shroud
,”
ASME J. Turbomach.
,
128
(
1
), pp.
110
119
.
25.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
26.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Cooling With Blade Rotation—Part I: Tip and Pressure Side Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091002
.
27.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Cooling With Blade Rotation—Part II: Shroud Coolant Injection
,”
ASME. J. Turbomach.
,
138
(
9
), p.
091003
.
28.
Moore
,
J. O. H. N.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
29.
Harvey
,
N. W.
,
2004
, “
Aerothermal Implications of Shroudless and Shrouded Blades
,” VKI Lectures Series 2004-02, Turbine Blade Tip Design and Tip Clearance Treatment.
30.
Wheeler
,
A. P.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
31.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
AIAA J. Propul. Power
,
27
(
5
), pp.
1008
1014
.
32.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
33.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part 1: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
You do not currently have access to this content.