Abstract

A conjugate heat transfer analysis of the complex mechanisms of internal and external cooling of turbine blades can present a formidable task. Such an effort may be simplified somewhat by evaluating the normalized metal surface temperature of a turbine blade, also known as the cooling scheme’s overall effectiveness. Investigations of turbine cooling effectiveness for scenarios with multiple rows typically assume a single coolant temperature. However, scenarios may exist in which a region of interest is affected by multiple local coolant temperatures, such as when coolant is injected from different internal passages. The present work develops an appropriate reference temperature for such a situation as well as a new nondimensional parameter indicating the relative difference between coolant temperatures.

The effect of this new nondimensional parameter on overall effectiveness and streamwise temperature gradients is evaluated for two double row cooling hole configurations. Each row, consisting of 7-7-7 cooling holes set in an Inconel flat plate, exhausts coolant at independently controlled temperatures; effectiveness is also evaluated at different advective capacity and momentum flux ratios. Circumstances are identified in which different coolant temperatures may present an advantage in overall cooling effectiveness and in reducing streamwise temperature gradients.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME Turbo Expo 2004
, Paper No. GT2004-53998.
3.
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Mathematical Model Describing the Coupled Heat Transfer in Effusion Cooled Combustor Walls
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
, Paper No. 97-GT-329.
4.
Williams
,
R. P.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2013
, “
Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
,”
ASME J. Turbomach.
,
136
(
3
), p.
031006
.
5.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
.
6.
Stewart
,
W. R.
, and
Dyson
,
T. E.
,
2017
, “
Conjugate Heat Transfer Scaling for Inconel 718
,”
ASME Turbo Expo 2017
, Paper No. GT2017-64873.
7.
Wiese
,
C. J.
,
Bryant
,
C. E.
,
Rutledge
,
J. L.
, and
and Polanka
,
M. D.
,
2018
, “
Influence of Scaling Parameters and Gas Properties on Overall Effectiveness on a Leading Edge Showerhead
,”
ASME J. Turbomach.
,
140
(
11
), p.
111007
.
8.
Bryant
,
C. E.
,
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
and Polanka
,
M. D.
,
2019
, “
Experimental Evaluations of the Relative Contributions to Overall Effectiveness in Turbine Blade Leading Edge Cooling
,”
ASME J. Turbomach.
,
141
(
4
), p.
041007
.
9.
Polanka
,
M. D.
,
Gillaugh
,
T.
,
Anthony
,
R. J.
,
Umholtz
,
M. J.
, and
Reeder
,
M. F.
,
2007
, “
Comparisons of Three Cooling Techniques in a High Speed, True Scale, Fully Cooled Turbine Vane Ring
,”
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
, Paper No. AIAA 2007-5097.
10.
Fuqua
,
M. F.
, and
Rutledge
,
J. L.
,
2021
, “
Film Cooling Superposition Theory for Multiple Rows of Cooling Holes with Multiple Coolant Temperatures
,”
ASME J. Turbomach.
,
143
(
11
), p.
111003
.
11.
Alqefl
,
M. H.
,
Nawathe
,
K.
,
Chen
,
P.
,
Zhu
,
R.
, and
Simon
,
T. W.
,
2019
, “
A Multi-Plenum Superposition Method for Scalar Transport with Application to Endwall Film Cooling
,”
International Gas Turbine Congress 2019
,
Tokyo, Japan
, Paper No. IGTC 2019-51.
12.
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2014
, “
CFD Evaluations of Unconventional Film Cooling Scaling Parameters on a Simulated Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101006
.
13.
Fischer
,
J. P.
,
McNamara
,
L. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2020
, “
Scaling Flat Plate, Low-Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio
,”
ASME J. Turbomach.
,
142
(
8
), p.
081010
.
14.
Schroeder
,
R. P.
, and
Thole
,
K. A.
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014
, Paper No. GT2014-25992.
15.
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2018
, “
Experimental Evaluation of Thermal and Mass Transfer Techniques to Measure Adiabatic Effectiveness with Various Coolant to Freestream Property Ratios
,”
ASME J. Turbomach.
,
140
(
2
), p.
021001
.
16.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mechanical Engineering
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.