Abstract

This article reports on numerical investigations of passive control techniques used for the performance enhancement of a large diameter axial flow cooling fan through modification of the blade tip geometry. Using open-source software, a novel meshing strategy is developed to carry out both steady and unsteady numerical computations of a periodic section of an axial flow fan. Analyzing the flow near the blade tip with a reduction in tip clearance, two predominant flow phenomena are identified. These two flow phenomena are further investigated with the aim of controlling them through implementation of a tip appendage design. Both introduced end-plate designs indicate effective control of each relevant flow phenomena. The constant thickness (CT) end-plate design is found to increase all fan performance characteristics at lower than design point (DP) flowrates, while increasing the fan’s peak efficiency plateau toward the rotor stall margin. However, none of the CT end-plate designs are able to improve the fan’s performance characteristics at its DP. The introduction of a novel trailing-edge (TE) end-plate design is found to increase all fan performance characteristics across the entire evaluated stable operating range, with an indicated increase of 37.3 percent in total-to-static pressure rise and a 2.9 percentage point increase in total-to-static efficiency at the fan’s DP flowrate. The aerodynamic performance results attest to the associated benefits of the investigated passive control techniques.

References

1.
Wilkinson
,
M. B
,
2017
, “
The Design of an Axial Flow Fan for Air-Cooled Heat Exchanger Applications
,”
M.S. thesis
,
Stellenbosch University
,
Stellenbosch, WC
.
2.
Wilkinson
,
M. B.
,
van der Spuy
,
S. J.
, and
von Backström
,
T. W.
,
2019
, “
Performance Testing of an Axial Flow Fan Designed for Air-Cooled Heat Exchanger Applications
,”
ASME J. Eng. Gas. Turbines. Power.
,
141
(
5
), p.
V001T09A005
. 10.1115/1.4041010
3.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing Company
,
Malabar
.
4.
Mitchell
,
A. M.
, and
Delery
,
J.
,
2001
, “
Research Into Vortex Breakdown Control
,”
Progress Aeros. Sci.
,
37
(
4
), pp.
385
418
. 10.1016/S0376-0421(01)00010-0
5.
Vad
,
J.
,
2008
, “
Aerodynamic Effects of Blade Sweep and Skew in Low-Speed Axial Flow Rotors at the Design Flow Rate: An Overview
,”
Proc. Insti. Mech. Eng., Part A J. Power Energy
,
222
(
1
), pp.
69
85
. 10.1243/09576509JPE471
6.
Ye
,
X.
,
Li
,
P.
,
Li
,
C.
, and
Ding
,
X.
,
2015
, “
Numerical Investigation of Blade Tip Grooving Effect on Performance and Dynamics of an Axial Flow Fan
,”
Energy
,
82
, pp.
556
569
. 10.1016/j.energy.2015.01.065
7.
Jiang
,
D.
,
Luo
,
H.
, and
Zhang
,
X.
,
2015
, “
Numerical Study of the Leakage Flow on a Novel Turbine Blade Tip
,”
Procedia. Eng.
,
99
, pp.
413
422
. 10.1016/j.proeng.2014.12.555
8.
Ye
,
X.
,
Zhang
,
J.
, and
Li
,
C.
,
2017
, “
Effect of Blade Tip Pattern on Performance of a Twin-Stage Variable-Pitch Axial Fan
,”
Energy
,
126
, pp.
535
563
. 10.1016/j.energy.2017.03.057
9.
Corsini
,
A.
, and
Sheard
,
A. G.
,
2007
, “
Tip End-Plate Concept Based on Leakage Vortex Rotation Number Control
,”
J. Comput. Appl. Mech.
,
8
(
1
), pp.
21
37
.
10.
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2007
, “
Development of Improved Blade Tip End-Plate Concepts for Low-Noise Operation in Industrial Fans
,”
Proc. Insti. Mech. Eng., Part A J. Power Energy
,
221
(
5
), pp.
669
681
. 10.1243/09576509JPE386
11.
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A.
,
2010
, “
Shaping of Tip End-Plate to Control Leakage Vortex Swirl in Axial Flow Fans
,”
ASME J. Turbomach.
,
132
(
3
), p.
031005
. 10.1115/1.3145017
12.
Corsini
,
A.
, and
Sheard
,
A. G.
,
2013
, “
End-Plate for Noise-by-Flow Control in Axial Fans
,”
Periodica Polytech. Mech. Eng.
,
57
(
2
), pp.
3
16
. 10.3311/PPme.7039
13.
Louw
,
F. G
,
2015
, “
Investigation of the Flow Field in the Vicinity of an Axial Flow Fan During Low Flow Rates
,” Ph.D. thesis,
Stellenbosch University
,
Stellenbosch, WC
.
14.
OpenCFD Ltd
,
2018
, “
OpenFOAM User Guide
,” https://www.openfoam.com/documentation/user-guide/index.php, Accessed June 12, 2018.
15.
Inoue
,
M.
, and
Furukawa
,
M.
,
2002
, “
Physics of Tip Clearance Flow in Turbomachinery
,”
ASME 2002 Joint US-European Fluids Engineering Division Conference
,
Montreal, Quebec, United States
,
July 14
.
16.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Heat Mass Trans.
,
4
(
1
), pp.
625
632
.
17.
Venter
,
S.
, and
Kröger
,
D.
,
1992
, “
The Effect of Tip Clearance on the Performance of an Axial Flow Fan
,”
Energy. Convers. Manage.
,
33
(
2
), pp.
89
97
. 10.1016/0196-8904(92)90094-D
18.
Cumpsty
,
N. A.
, and
Storer
,
J. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
. 10.1115/1.2929095
19.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME Int. Gas Turbine Aeroengine Congress Exposition
,
115
(
4
), pp.
19
21
.
20.
Tiralap
,
A.
,
Tan
,
C. S.
,
Donahoo
,
E.
,
Montgomery
,
M.
, and
Cornelius
,
C.
,
2017
, “
Effects of Rotor Tip Blade Loading Variation on Compressor Stage Performance
,”
ASME J. Turbomach.
,
139
(
5
), p.
051006
. 10.1115/1.4035252
21.
Amandolese
,
X.
,
Michelin
,
S.
, and
Choquel
,
M.
,
2013
, “
Low Speed Flutter and Limit Cycle Oscillations of a Two-Degree-of-Freedom Flat Plate in a Wind Tunnel
,”
J. Fluids Struct.
,
43
, pp.
244
255
. 10.1016/j.jfluidstructs.2013.09.002
22.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow
,”
J. Fluid. Eng.
,
130
(
12
), p.
121401
. 10.1115/1.2979230
23.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl.Mech. Eng.
,
3
(
2
), pp.
269
289
. 10.1016/0045-7825(74)90029-2
You do not currently have access to this content.